Recurrence and transience of random walks in random environments on a strip

被引:42
|
作者
Bolthausen, E
Goldsheid, I
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1007/s002200000279
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explain the necessary and sufficient conditions for recurrent and transient behavior of a random walk in a stationary ergodic random environment on a strip in terms of properties of a top Lyapunov exponent. This Lyapunov exponent is defined for a product of a stationary sequence of positive matrices. In the one-dimensional case this approach allows us to treat wider classes of random walks than before.
引用
收藏
页码:429 / 447
页数:19
相关论文
共 50 条
  • [31] ON THE TRANSIENCE AND RECURRENCE OF RANDOM-WALK AND RANDOM ENVIRONMENT
    SUNYACH, C
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1987, 23 (04): : 613 - 626
  • [32] TRANSIENT RANDOM WALKS ON A STRIP IN A RANDOM ENVIRONMENT
    Roitershtein, Alexander
    ANNALS OF PROBABILITY, 2008, 36 (06): : 2354 - 2387
  • [33] Lingering Random Walks in Random Environment on a Strip
    Erwin Bolthausen
    Ilya Goldsheid
    Communications in Mathematical Physics, 2008, 278 : 253 - 288
  • [34] Lingering random walks in random environment on a strip
    Bolthausen, Erwin
    Goldsheid, Ilya
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) : 253 - 288
  • [35] Random Walks in Cooling Random Environments
    Avena, Luca
    den Hollander, Frank
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 23 - 42
  • [36] On transience conditions for Markov chains and random walks
    Denisov, DK
    Foss, SG
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (01) : 44 - 57
  • [37] Random Walks in Degenerate Random Environments
    Holmes, Mark
    Salisbury, Thomas S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (05): : 1050 - 1077
  • [38] On Transience Conditions for Markov Chains and Random Walks
    D. E. Denisov
    S. G. Foss
    Siberian Mathematical Journal, 2003, 44 : 44 - 57
  • [39] Zero-one law for directional transience of one-dimensional random walks in dynamic random environments
    Orenshtein, Tal
    dos Santos, Renato Soares
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [40] Conservative and Semiconservative Random Walks: Recurrence and Transience (vol 31, pg 1900, 2018)
    Abramov, Vyacheslav M.
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) : 541 - 543