The role of RecQ helicases in non-homologous end-joining

被引:18
|
作者
Keijzers, Guido [1 ]
Maynard, Scott [1 ]
Shamanna, Raghavendra A. [2 ]
Rasmussen, Lene Juel [1 ]
Croteau, Deborah L. [2 ]
Bohr, Vilhelm A. [1 ,2 ]
机构
[1] Univ Copenhagen, Dept Cellular & Mol Med, Ctr Hlth Aging, Copenhagen, Denmark
[2] NIA, Lab Mol Gerontol, Baltimore, MD 21224 USA
关键词
Alternative end-joining; Ku70/80; microhomology-mediated end-joining; non-homologous end-joining; RecQ helicases; telomere; DEPENDENT PROTEIN-KINASE; DOUBLE-STRAND BREAKS; ROTHMUND-THOMSON-SYNDROME; WERNER-SYNDROME PROTEIN; BASE EXCISION-REPAIR; BLOOMS-SYNDROME PROTEIN; RNA-POLYMERASE-II; CLASS SWITCH RECOMBINATION; SYNDROME GENE-PRODUCT; LIGASE-IV COMPLEX;
D O I
10.3109/10409238.2014.942450
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 50 条
  • [21] Sodium ascorbate interaction with non-homologous end-joining repair
    Hariri, Mehran
    Papalanis, Eleftherios
    Spiegelberg, Diana
    Plotnikov, Evgenii
    Viktorsson, Kristina
    Stenerlow, Bo
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S5343 - S5345
  • [22] Structural and Functional Insights into the Non-Homologous End-Joining Pathway
    Lees-Miller, S. P.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2010, 51 (07) : 703 - 703
  • [23] DNA non-homologous end-joining enters the resection arena
    Jeggo, Penny A.
    Loebrich, Markus
    ONCOTARGET, 2017, 8 (55) : 93317 - 93318
  • [24] Mechanism and regulation of human non-homologous DNA end-joining
    Lieber, MR
    Ma, YM
    Pannicke, U
    Schwarz, K
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (09) : 712 - 720
  • [25] Role for non-homologous end-joining in the repair of UVA-induced DNA damage
    Fell, LJ
    Paul, ND
    McMillan, TJ
    INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2002, 78 (11) : 1023 - 1027
  • [26] The non-homologous end-joining pathway is involved in stable transformation in rice
    Saika, Hiroaki
    Nishizawa-Yokoi, Ayako
    Toki, Seiichi
    FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [27] Genetic and physiological regulation of non-homologous end-joining in mammalian cells
    Tachibana, A
    NOVEL DEVELOPMENTS ON GENETIC RECOMBINATION: DNA DOUBLE STRAND BREAK AND DNA END-JOINING, 2004, 38 : 21 - 44
  • [28] A single-molecule view on non-homologous end-joining in bacteria
    Westerlund, Fredrik
    Pavlova, Evgeniya
    Budida, Anusha
    Persson, Elin
    Oz, Robin
    Sriram, K. K.
    Guerois, Raphael
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S213 - S213
  • [29] Canonical DNA non-homologous end-joining; capacity versus fidelity
    Shibata, Atsushi
    Jeggo, Penny A.
    BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115):
  • [30] Non-homologous end-joining at challenged replication forks: an RNA connection?
    Audoynaud, Charlotte
    Vagner, Stephan
    Lambert, Sarah
    TRENDS IN GENETICS, 2021, 37 (11) : 973 - 985