Nonparametric One-Bit Quantizers for Distributed Estimation

被引:21
作者
Chen, Hao [1 ]
Varshney, Pramod K. [1 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
Data fusion; dependent observations; distributed parameter estimation; nonparametric quantization; nonsubtractive dithering; quantization; WIRELESS SENSOR NETWORKS; UNIVERSAL DECENTRALIZED ESTIMATION; SIGNAL PARAMETER-ESTIMATION; DESIGN; QUANTIZATION; PERFORMANCE;
D O I
10.1109/TSP.2010.2046597
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider the nonparametric distributed parameter estimation problem using one-bit quantized data from peripheral sensors. Assuming that the sensor observations are bounded, nonparametric distributed estimators are proposed based on the knowledge of the first N moments of sensor noises. These estimators are shown to be either unbiased or asymptotically unbiased with bounded and known estimation variance. Further, the uniformly optimal quantizer based only on the first moment information and the optimal minimax quantizer with the knowledge of the first two moments are determined. The proposed estimators are shown to be consistent even when local sensor noises are not independent but m-dependent. The relationship between the proposed approaches and dithering in quantization is also investigated. The superiority of the proposed quantization/estimation schemes is illustrated via illustrative examples.
引用
收藏
页码:3777 / 3787
页数:11
相关论文
共 23 条
[1]  
ANDERSSON T, 2000, P EUR SIGN PROC C TA, P1807
[2]  
[Anonymous], 1993, ESIMATION THEORY
[3]   Multivariate signal parameter estimation under dependent noise from 1-Bit dithered quantized data [J].
Dabeer, Onkar ;
Masry, Elias .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) :1637-1654
[4]   Signal parameter estimation using 1-bit dithered quantization [J].
Dabeer, Onkar ;
Karnik, Aditya .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5389-5405
[5]   Quantization [J].
Gray, RM ;
Neuhoff, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2325-2383
[6]  
GRAY RM, 1993, IEEE T INFORM THEORY, V39, P805, DOI 10.1109/18.256489
[7]   DISTRIBUTED ESTIMATION AND QUANTIZATION [J].
GUBNER, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1456-1459
[8]   Effects of sampling and quantization on single-tone frequency estimation [J].
Host-Madsen, A ;
Händel, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (03) :650-662
[9]   DESIGN OF QUANTIZERS FOR DECENTRALIZED ESTIMATION SYSTEMS [J].
LAM, WM ;
REIBMAN, AR .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1993, 41 (11) :1602-1605
[10]  
Lehmann E. L., 2006, THEORY POINT ESTIMAT, DOI 10.1007/b98854