Comments on localized and integral localized approximations in spherical coordinates

被引:58
作者
Gouesbet, Gerard [1 ]
Lock, James A. [2 ]
机构
[1] Normandie Univ, CORIA, UMR 6614, Univ & INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
[2] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA
关键词
Localized approximations; Beam shape coefficients; Generalized Lorenz-Mie theories; LORENZ-MIE THEORY; BEAM-SHAPE COEFFICIENTS; AXIS GAUSSIAN-BEAM; UNIAXIAL ANISOTROPIC SPHERE; ORDER BESSEL BEAMS; RIGOROUS JUSTIFICATION; SPHEROIDAL PARTICLE; RADIATION FORCE; LASER-BEAMS; SCATTERING;
D O I
10.1016/j.jqsrt.2016.03.026
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Comments on these procedures are, however, required in order to help researchers make correct decisions concerning their use. This paper has the flavor of a short review and takes the opportunity to attract the attention of the readers to a required refinement of terminology. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 59 条
  • [1] Ambrosio LA, 2011, PR ELECTROMAGN RES S, P294
  • [2] Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles
    Ambrosio, Leonardo A.
    Hernandez-Figueroa, Hugo E.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (08): : 2354 - 2363
  • [3] Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces
    Ambrosio, Leonardo A.
    Hernandez-Figueroa, Hugo E.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (07): : 1893 - 1906
  • [4] Analytical partial wave expansion of vector Bessel beam and its application to optical binding
    Chen, Jun
    Ng, Jack
    Wang, Pei
    Lin, Zhifang
    [J]. OPTICS LETTERS, 2010, 35 (10) : 1674 - 1676
  • [5] Scattering of a zero-order Bessel beam by a concentric sphere
    Chen, Zhuyang
    Han, Yiping
    Cui, Zhiwei
    Shi, Xiaowei
    [J]. JOURNAL OF OPTICS, 2014, 16 (05)
  • [6] INTERACTION BETWEEN A SPHERE AND A GAUSSIAN-BEAM - COMPUTATIONS ON A MICRO-COMPUTER
    CORBIN, F
    GREHAN, G
    GOUESBET, G
    MAHEU, B
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1988, 5 (03) : 103 - 108
  • [7] THEORY OF ELECTROMAGNETIC BEAMS
    DAVIS, LW
    [J]. PHYSICAL REVIEW A, 1979, 19 (03): : 1177 - 1179
  • [8] Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions
    Doicu, A
    Wriedt, T
    [J]. APPLIED OPTICS, 1997, 36 (13): : 2971 - 2978
  • [9] Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory
    Gouesbet, G
    Letellier, C
    Ren, KF
    Grehan, G
    [J]. APPLIED OPTICS, 1996, 35 (09): : 1537 - 1542
  • [10] GOUESBET G, 1994, J OPT SOC AM A, V11, P2516, DOI 10.1364/JOSAA.11.002516