Finite Element Analysis of Thermo-mechanical Contact Fatigue Crack in Rail

被引:0
作者
Li, Wei [1 ]
Wen, Zefeng [1 ]
Wu, Lei [1 ]
Du, Xing [1 ]
Jin, Xuesong [1 ]
机构
[1] SW Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Peoples R China
来源
PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND MECHANICS, VOLS 1 AND 2 | 2009年
关键词
Wheel-rail friction; Surface crack; Stress intensity factor; Thermo-mechanical coupling; Finite element method; ROLLING-CONTACT; PROPAGATION; GROWTH;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An oblique surface crack in rail under wheel-rail full slip contact loading and frictional heating is analyzed by finite element simulations. In the present thermo-mechanical coupling finite element model, the heat-convection between the rail and ambient, heat transfer between the crack surfaces, and temperature-dependent material properties are taken into consideration. The effects of the frictional coefficients of wheel-rail contact and crack surfaces and the crack orientation on the stress intensity factors are investigated. The results reveal that the values of stress intensity factors K-1 and K-2 obtained by the thermo-mechanical coupling simulation are lower than those by the only mechanical simulation. But the value of the stress intensity factor range Delta K-2 for the former is higher. Reducing the wheel-rail contact surface frictional coefficient, increasing the crack-face frictional coefficient and avoiding the small angle of crack can restrict the rail surface crack growth.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 20 条