Fuzzy linear systems

被引:332
作者
Friedman, M [1 ]
Ming, M [1 ]
Kandel, A [1 ]
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
关键词
fuzzy linear system; embedding method; nonnegative matrix; inverse matrix;
D O I
10.1016/S0165-0114(96)00270-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A general fuzzy linear system is investigated using the embedding approach. Conditions for the existence of a unique fuzzy solution to n x n linear system are derived and a numerical procedure for calculating the solution is designed. The applicability of the proposed model is illustrated with examples. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 29 条
[1]   THE LAW OF LARGE NUMBERS FOR FUZZY PROCESSES AND THE ESTIMATION PROBLEM [J].
BADARD, R .
INFORMATION SCIENCES, 1982, 28 (03) :161-178
[2]   FUZZY EIGENVALUES AND INPUT-OUTPUT-ANALYSIS [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1990, 34 (02) :187-195
[3]   FUZZY MAPPING AND CONTROL [J].
CHANG, SSL ;
ZADEH, LA .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (01) :30-&
[4]  
Cong-Xin W., 1991, FUZZY SETS SYSTEMS, V44, P33
[5]  
Congxin W., 1992, FUZZY SETS SYST, V46, P281
[6]  
DIAMOND P, 1988, INFORM SCI, V46, P144
[7]   OPERATIONS ON FUZZY NUMBERS [J].
DUBOIS, D ;
PRADE, H .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1978, 9 (06) :613-626
[8]  
Dubois D.J., 1980, FUZZY SETS SYSTEMS T
[9]  
Friedman M., 1994, FUNDAMENTALS COMPUTE, P307
[10]   EIGEN FUZZY NUMBER SETS [J].
GOETSCHEL, R ;
VOXMAN, W .
FUZZY SETS AND SYSTEMS, 1985, 16 (01) :75-85