Selective addressing of solid-state spins at the nanoscale via magnetic resonance frequency encoding

被引:34
作者
Zhang, H. [1 ,2 ]
Arai, K. [3 ]
Belthangady, C. [1 ,2 ]
Jaskula, J. -C. [1 ,2 ]
Walsworth, R. L. [1 ,2 ,4 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
[4] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
QUANTUM; SPECTROSCOPY; RESOLUTION; LIMITS;
D O I
10.1038/s41534-017-0033-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nitrogen vacancy centre in diamond is a leading platform for nanoscale sensing and imaging, as well as quantum information processing in the solid state. To date, individual control of two nitrogen vacancy electronic spins at the nanoscale has been demonstrated. However, a key challenge is to scale up such control to arrays of nitrogen vacancy spins. Here, we apply nanoscale magnetic resonance frequency encoding to realize site-selective addressing and coherent control of a four-site array of nitrogen vacancy spins. Sites in the array are separated by 100 nm, with each site containing multiple nitrogen vacancies separated by similar to 15 nm. Microcoils fabricated on the diamond chip provide electrically tuneable magnetic field gradients similar to 0.1 G/nm. Tailored application of gradient fields and resonant microwaves allow site-selective nitrogen vacancy spin manipulation and sensing applications, including Rabi oscillations, imaging, and nuclear magnetic resonance spectroscopy with nanoscale resolution. Microcoil-based magnetic resonance of solid-state spins provides a practical platform for quantum-assisted sensing, quantum information processing, and the study of nanoscale spin networks.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond [J].
Ajoy, A. ;
Bissbort, U. ;
Lukin, M. D. ;
Walsworth, R. L. ;
Cappellaro, P. .
PHYSICAL REVIEW X, 2015, 5 (01)
[2]   Quantum Simulation via Filtered Hamiltonian Engineering: Application to Perfect Quantum Transport in Spin Networks [J].
Ajoy, Ashok ;
Cappellaro, Paola .
PHYSICAL REVIEW LETTERS, 2013, 110 (22)
[3]  
Arai K, 2015, NAT NANOTECHNOL, V10, P859, DOI [10.1038/nnano.2015.171, 10.1038/NNANO.2015.171]
[4]   A large-scale quantum simulator on a diamond surface at room temperature [J].
Cai, Jianming ;
Retzker, Alex ;
Jelezko, Fedor ;
Plenio, Martin B. .
NATURE PHYSICS, 2013, 9 (03) :168-173
[5]  
Callaghan P. T., 1991, Principles of Nuclear Magnetic Resonance Microscopy
[6]   Atom-like crystal defects: From quantum computers to biological sensors [J].
Childress, Lilian ;
Walsworth, Ronald ;
Lukin, Mikhail .
PHYSICS TODAY, 2014, 67 (10) :38-43
[7]  
DeVience SJ, 2015, NAT NANOTECHNOL, V10, P129, DOI [10.1038/nnano.2014.313, 10.1038/NNANO.2014.313]
[8]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[9]  
2-E
[10]   Simulating a quantum magnet with trapped ions [J].
Friedenauer, A. ;
Schmitz, H. ;
Glueckert, J. T. ;
Porras, D. ;
Schaetz, T. .
NATURE PHYSICS, 2008, 4 (10) :757-761