Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism

被引:1
|
作者
Hashchyshyn, V. [1 ]
Tymochko-Voloshyn, R. [1 ]
Paraniak, N. [1 ]
Vovkanych, L. [1 ]
Hlozhyk, I. [1 ]
Trach, V. [1 ]
Muzyka, F. [1 ]
Serafyn, Y. [2 ]
Prystupa, E. [1 ]
Boretsky, Y. [1 ,3 ]
机构
[1] Boberskyi Lviv State Univ Phys Culture, UA-79007 Lvov, Ukraine
[2] Danylo Halytsky Lviv Natl Med Univ, UA-79010 Lvov, Ukraine
[3] Natl Acad Agr Sci, Inst Anim Biol, UA-79034 Lvov, Ukraine
关键词
myosatellitocytes; nucleotide polymorphisms; transcription factors; skeletal muscles; regeneration; SATELLITE CELL; CALORIE RESTRICTION; SELF-RENEWAL; STEM-CELLS; MYOGENESIS; EXERCISE; LACTATE; PATHWAY; SENSOR; SPEED;
D O I
10.3103/S0095452722030033
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Skeletal muscles are heterogeneous tissue containing different types of muscle fibers. Their distribution depends on heredity, type of exercise, sex, age, and muscle type. In addition, stem cells (myosatellitocytes) are found in large amounts in the muscle tissue. Myosatellitocytes are the main material for regeneration of microtears of muscle fibers always occuring during intensive physical exercises. Myosatellitocytes are capable of long-term storage in an inactive "dormant" state, but they can be rapidly activated to provide an efficient repair of damaged muscle fibers. The metabolism of myosatellitocytes and myoblasts and their migration into the damaged area are regulated by a complex system of cytokines and transcription factors, the activity of which depends on many factors. Microtears initiating the development of the inflammatory process and activation of myosatellitocytes is a determining factor. The study into molecular mechanisms of the relationship between inflammatory processes in muscle tissue and changes in myosatellitocyte metabolism is of fundamental importance and is necessary for the selection of efficient methods for muscle tissue recovery.
引用
收藏
页码:253 / 260
页数:8
相关论文
共 50 条
  • [1] Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism
    V. Hashchyshyn
    R. Tymochko-Voloshyn
    N. Paraniak
    L. Vovkanych
    I. Hlozhyk
    V. Trach
    F. Muzyka
    Y. Serafyn
    E. Prystupa
    Y. Boretsky
    Cytology and Genetics, 2022, 56 : 253 - 260
  • [2] Regulation and phylogeny of skeletal muscle regeneration
    Baghdadi, Meryem B.
    Tajbakhsh, Shahragim
    DEVELOPMENTAL BIOLOGY, 2018, 433 (02) : 200 - 209
  • [3] Importance of Nutrient Availability and Metabolism for Skeletal Muscle Regeneration
    Blum, Jamie
    Epstein, Rebekah
    Watts, Stephen
    Thalacker-Mercer, Anna
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [4] PARTICIPATION OF 'NON-MUSCLE' STEM CELLS IN REGENERATION OF SKELETAL MUSCLE
    Archacka, Karolina
    Moraczewski, Jerzy
    Grabowska, Iwona
    POSTEPY BIOLOGII KOMORKI, 2010, 37 (01) : 187 - 207
  • [5] Bioengineered human skeletal muscle capable of functional regeneration
    Fleming, J. W.
    Capel, A. J.
    Rimington, R. P.
    Wheeler, P.
    Leonard, A. N.
    Bishop, N. C.
    Davies, O. G.
    Lewis, M. P.
    BMC BIOLOGY, 2020, 18 (01)
  • [6] Regulation of fat metabolism in skeletal muscle
    Jeukendrup, AE
    LIPIDS AND INSULIN RESISTANCE: THE ROLE OF FATTY ACID METABOLISM AND FUEL PARTITIONING, 2002, 967 : 217 - 235
  • [7] Epigenetic regulation of skeletal muscle metabolism
    Howlett, Kirsten F.
    McGee, Sean L.
    CLINICAL SCIENCE, 2016, 130 (13) : 1051 - 1063
  • [8] Skeletal muscle regeneration in cancer cachexia
    Bossola, Maurizio
    Marzetti, Emanuele
    Rosa, Fausto
    Pacelli, Fabio
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2016, 43 (05): : 522 - 527
  • [9] Epigenetic regulation of satellite cell fate during skeletal muscle regeneration
    Massenet, Jimmy
    Gardner, Edward
    Chazaud, Benedicte
    Dilworth, F. Jeffrey
    SKELETAL MUSCLE, 2021, 11 (01)
  • [10] Candidate Genes of Regulation of Skeletal Muscle Energy Metabolism in Athletes
    Balberova, Olga V.
    Bykov, Evgeny V.
    Medvedev, German V.
    Zhogina, Margarita A.
    Petrov, Kirill V.
    Petrova, Marina M.
    Al-Zamil, Mustafa
    Trefilova, Vera V.
    Goncharova, Polina S.
    Shnayder, Natalia A.
    GENES, 2021, 12 (11)