Classification of Hand Motions in EEG Signals using Recurrent Neural Networks

被引:0
|
作者
Popov, E. [1 ]
Fomenkov, S. [1 ]
机构
[1] Volgograd State Tech Univ, CAD Dept, Volgograd, Russia
来源
2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM) | 2016年
基金
俄罗斯基础研究基金会;
关键词
EEG; brain-computer interface; recurrent convolutional neural network; ADADELTA; reclified linear; softmax; cross-entropy;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes hand motion detection and the method for classification of 32-component EEG signals. This method is based on using recurrent convolution neural network as multi-class classifier. In this paper, we propose and empirically evaluate several architectures of recurrent convolutional neural network, and show advantages of using recurrent convolutional neural network for investigating problem. The results prove that this type of classifier can effectively distinguish characteristic features in the initial EEG signals and provide correct values of neural network outputs. Using recurrent convolution layer instead of the standard convolution layer can significantly improve the quality of classification. Adding recurrent connections for convolutional layer neurons increases the depth of the network, maintaining a constant number of parameters by weight sharing between layers.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] EEG Signals Classification and Diagnosis Using Wavelet Transform and Artificial Neural Network
    Chavan, Arun
    Kolte, Mahesh
    2017 INTERNATIONAL CONFERENCE ON NASCENT TECHNOLOGIES IN ENGINEERING (ICNTE-2017), 2017,
  • [32] Feature Extraction and Classification of EEG Signals using Wavelet Transform, SVM and Artificial Neural Networks for Brain Computer Interfaces
    Kousarrizi, M. R. Nazari
    Ghanbari, A. Asadi
    Teshnehlab, M.
    Aliyari, M.
    Gharaviri, A.
    2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 352 - 355
  • [33] Motor Imagery EEG Signal Classification Using Deep Neural Networks
    Nakra, Abhilasha
    Duhan, Manoj
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 128 - 140
  • [34] Real-time epileptic detection from EEG signals using statistical features optimisation and neural networks classification
    Mandhouj, Badreddine
    Bouzaiane, Sami
    Cherni, Mohamed Ali
    Ben Abdelaziz, Ines
    Yacoub, Slim
    Sayadi, Mounir
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2021, 37 (04) : 348 - 367
  • [35] Active Learning Approach for EEG Classification using Neural Networks: A review
    Sebek, Jakub
    Schaabova, Hana
    Krajca, Vladimir
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [36] A Multiuser EEG Based Imaginary Motion Classification Using Neural Networks
    Bhattacharya, Sylvia
    Haddad, Rami J.
    Ahad, Mohammad
    SOUTHEASTCON 2016, 2016,
  • [37] Classification of Hand Movements from Non-invasive Brain Signals Using Lattice Neural Networks with Dendritic Processing
    Ojeda, Leonardo
    Vega, Roberto
    Eduardo Falcon, Luis
    Sanchez-Ante, Gildardo
    Sossa, Humberto
    Antelis, Javier M.
    PATTERN RECOGNITION (MCPR 2015), 2015, 9116 : 23 - 32
  • [38] Recurrent and convolutional neural networks in classification of EEG signal for guided imagery and mental workload detection
    Postepski, Filip
    Wojcik, Grzegorz M.
    Wrobel, Krzysztof
    Kawiak, Andrzej
    Zemla, Katarzyna
    Sedek, Grzegorz
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [39] Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks
    Sikka, Apoorva
    Jamalabadi, Hamidreza
    Krylova, Marina
    Alizadeh, Sarah
    van der Meer, Johan N.
    Danyeli, Lena
    Deliano, Matthias
    Vicheva, Petya
    Hahn, Tim
    Koenig, Thomas
    Bathula, Deepti R.
    Walter, Martin
    HUMAN BRAIN MAPPING, 2020, 41 (09) : 2334 - 2346
  • [40] Hand Movement Classification Base on EEG Signals using Deep Learning and Dimensional Reduction Technique
    Boonme, Phattraporn
    Thongserm, Petchanon
    Arunsuriyasak, Peerachai
    Phasukkit, Pattarapong
    2019 12TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2019), 2019,