Impulse and particle dislodgement under turbulent flow conditions

被引:90
作者
Celik, Ahmet O. [1 ]
Diplas, Panayiotis [1 ]
Dancey, Clinton L. [2 ]
Valyrakis, Manousos [1 ]
机构
[1] Virginia Tech, Baker Environm Hydraul Lab, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA
[2] Virginia Tech, Baker Environm Hydraul Lab, Dept Mech Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
probability; turbulence; two-phase flow; SEDIMENT ENTRAINMENT; INCIPIENT MOTION; SHEAR-STRESS; BED; TRANSPORT; PROBABILITY; MOVEMENT; PROTRUSION; GRAINS;
D O I
10.1063/1.3385433
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, we investigated the role of turbulence fluctuations on the entrainment of a fully exposed grain near threshold flow conditions. Experiments were carried out to measure synchronously the near bed flow velocity and the particle movement for a range of flow conditions and resulting particle entrainment frequencies. We used a simplified bed geometry consisted of spherical particles to reduce the complexities associated with the variations in the bed and flow details in an effort to identify the underlying dominant physical mechanism. An analysis was performed based on common force approximations using near bed flow velocity. Turbulence fluctuations were treated as impulses, which are products of magnitude and duration of applied force. It is demonstrated that besides the magnitude of the instantaneous forces applied on a sediment grain, their duration is important as well in determining whether a particle will be entrained by a turbulent flow event. Frequency of particle entrainment varied remarkably with minute changes in gross flow parameters. Impulse imparted on the sediment grain by turbulent flow was found to be well represented by a log-normal distribution. We obtained a (log-normal) probability density function (pdf) dependent on only the coefficient of variation of the impulse (impulse intensity). Relation of the impulse intensity to the particle Reynolds number, Re(*), was established. The sensitivity of the computed impulse to the critical force level, as well as the influence of the critical impulse level on the dislodgement events, was explored. Particle entrainment probabilities were found using the derived pdf as well as experimental observations and a good agreement between the two is reported. Implications of the presented impulse concept and our experimental findings for sediment mobility at low bed shear stress conditions are also discussed.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 38 条
[1]  
BALAKRISHNAN M, 1997, THESIS VIRGINIA POLY
[2]   A MODEL FOR THE ENTRAINMENT AND TRANSPORT OF SEDIMENT GRAINS OF MIXED SIZES, SHAPES, AND DENSITIES [J].
BRIDGE, JS ;
BENNETT, SJ .
WATER RESOURCES RESEARCH, 1992, 28 (02) :337-363
[3]   A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers [J].
Buffington, JM ;
Montgomery, DR .
WATER RESOURCES RESEARCH, 1997, 33 (08) :1993-2029
[4]   Fluctuations of turbulent bed shear stress [J].
Cheng, NS ;
Law, AWK .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2003, 129 (01) :126-130
[5]   Pickup probability for sediment entrainment [J].
Cheng, NS ;
Chiew, YM .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1998, 124 (02) :232-235
[6]   Probability of individual grain movement and threshold condition [J].
Dancey, CL ;
Diplas, P ;
Papanicolaou, A ;
Bala, M .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2002, 128 (12) :1069-1075
[7]   The Role of Impulse on the Initiation of Particle Movement Under Turbulent Flow Conditions [J].
Diplas, Panayiotis ;
Dancey, Clint L. ;
Celik, Ahmet O. ;
Valyrakis, Manousos ;
Greer, Krista ;
Akar, Tanju .
SCIENCE, 2008, 322 (5902) :717-720
[8]   HYDRODYNAMIC FORCES ON A ROUGH WALL [J].
EINSTEIN, HA ;
ELSAMNI, EA .
REVIEWS OF MODERN PHYSICS, 1949, 21 (03) :520-524
[9]   INITIAL MOVEMENT OF GRAINS ON A STREAM BED - EFFECT OF RELATIVE PROTRUSION [J].
FENTON, JD ;
ABBOTT, JE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 352 (1671) :523-537
[10]  
GESSLER J, 1971, RIVER MECH, pCH7