Computational challenges and temporal dependence in Bayesian nonparametric models

被引:0
作者
Argiento, Raffaele [1 ,2 ]
Ruggiero, Matteo [1 ,2 ]
机构
[1] Univ Torino, Turin, Italy
[2] Coll Carlo Alberto, Turin, Italy
关键词
Bayesian dependent model; Conjugacy; Computation; Dirichlet; Transition function; FLEMING-VIOT PROCESS; DENSITY-ESTIMATION; SAMPLING METHODS; DIRICHLET; MIXTURE; INFERENCE; DISTRIBUTIONS;
D O I
10.1007/s10260-017-0397-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Muller et al. (Stat Methods Appl, 2017) provide an excellent review of several classes of Bayesian nonparametric models which have found widespread application in a variety of contexts, successfully highlighting their flexibility in comparison with parametric families. Particular attention in the paper is dedicated to modelling spatial dependence. Here we contribute by concisely discussing general computational challenges which arise with posterior inference with Bayesian nonparametric models and certain aspects of modelling temporal dependence.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 50 条
  • [21] A Nonparametric Bayesian Framework for Uncertainty Quantification in Stochastic Simulation
    Xie, Wei
    Li, Cheng
    Wu, Yuefeng
    Zhang, Pu
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04) : 1527 - 1552
  • [22] Nonparametric Bayesian modelling using skewed Dirichlet processes
    Iglesias, Pilar L.
    Orellana, Yasna
    Quintana, Fernando A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 1203 - 1214
  • [23] Bayesian semiparametric analysis for latent variable models with mixed continuous and ordinal outcomes
    Xia, Yemao
    Gou, Jianwei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (03) : 451 - 465
  • [24] Bayesian Nonparametric Longitudinal Data Analysis
    Quintana, Fernando A.
    Johnson, Wesley O.
    Waetjen, L. Elaine
    Gold, Ellen B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1168 - 1181
  • [25] Spatiotemporal Clustering with Neyman-Scott Processes via Connections to Bayesian Nonparametric Mixture Models
    Wang, Yixin
    Degleris, Anthony
    Williams, Alex
    Linderman, Scott W.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (547) : 2382 - 2395
  • [26] Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models
    Xie, Fangzheng
    Xu, Yanxun
    BAYESIAN ANALYSIS, 2020, 15 (01): : 159 - 186
  • [27] Fast Search and Estimation of Bayesian Nonparametric Mixture Models Using a Classification Annealing EM Algorithm
    Karabatsos, George
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 236 - 247
  • [28] Nonparametric Bayesian Statistical Models in Biomedical Research
    Noh, Heesang
    Park, Jinsu
    Sim, Gyuseok
    Yu, Jae-eun
    Chung, Yeonseung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 867 - 889
  • [29] A Simple Class of Bayesian Nonparametric Autoregression Models
    Di Lucca, Maria Anna
    Guglielmi, Alessandra
    Mueller, Peter
    Quintana, Fernando A.
    BAYESIAN ANALYSIS, 2013, 8 (01): : 63 - 87
  • [30] Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation
    Gill, Jeff
    Casella, George
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 453 - 464