Placement of Single Proteins within the SERS Hot Spots of Self-Assembled Silver Nanolenses

被引:72
作者
Heck, Christian [1 ,2 ,3 ,4 ]
Kanehira, Yuya [5 ]
Kneipp, Janina [2 ,3 ,4 ]
Bald, Ilko [1 ,2 ]
机构
[1] Univ Potsdam, Dept Chem Phys Chem, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] BAM Fed Inst Mat Res & Testing, Richard Willstaetter Str 11, D-12489 Berlin, Germany
[3] Humboldt Univ, Dept Chem, Brook Taylor Str 2, D-12489 Berlin, Germany
[4] Humboldt Univ, SALSA, Brook Taylor Str 2, D-12489 Berlin, Germany
[5] Chitose Inst Sci & Technol, Bibi 758-65, Chitose, Hokkaido, Japan
关键词
DNA origami; protein analysis; SERS; silver nanoparticles; streptavidin; ENHANCED RAMAN-SCATTERING; DNA-ORIGAMI; FLUORESCENCE ENHANCEMENT; NANOPARTICLE DIMERS; GOLD NANOPARTICLES; NANOSTRUCTURES; HYBRIDIZATION; SPECTROSCOPY; NANOCRYSTALS; NANOANTENNAS;
D O I
10.1002/anie.201801748
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study demonstrates the bottom-up synthesis of silver nanolenses. A robust coating protocol enabled the functionalization of differently sized silver nanoparticles with DNA single strands of orthogonal sequence. Coated particles 10nm, 20nm, and 60nm in diameter were self-assembled by DNA origami scaffolds to form silver nanolenses. Single molecules of the protein streptavidin were selectively placed in the gap of highest electric field enhancement. Streptavidin labelled with alkyne groups served as model analyte in surface-enhanced Raman scattering (SERS) experiments. By correlated Raman mapping and atomic force microscopy, SERS signals of the alkyne labels of a single streptavidin molecule, from a single silver nanolens, were detected. The discrete, self-similar aggregates of solid silver nanoparticles are promising for plasmonic applications.
引用
收藏
页码:7444 / 7447
页数:4
相关论文
共 52 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy:: The case of photoinduced degradation of aromatic amino acids [J].
Bjerneld, EJ ;
Svedberg, F ;
Johansson, P ;
Käll, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (19) :4187-4193
[3]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[4]   Expanding applications of SERS through versatile nanomaterials engineering [J].
Cardinal, M. Fernanda ;
Ende, Emma Vander ;
Hackler, Ryan A. ;
McAnally, Michael O. ;
Stair, Peter C. ;
Schatz, George C. ;
Van Duyne, Richard P. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :3886-3903
[5]   Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain [J].
Coluccio, Maria Laura ;
Gentile, Francesco ;
Das, Gobind ;
Nicastri, Annalisa ;
Perri, Angela Mena ;
Candeloro, Patrizio ;
Perozziello, Gerardo ;
Zaccaria, Remo Proietti ;
Gongora, Juan Sebastian Totero ;
Alrasheed, Salma ;
Fratalocchi, Andrea ;
Limongi, Tania ;
Cuda, Giovanni ;
Di Fabrizio, Enzo .
SCIENCE ADVANCES, 2015, 1 (08)
[6]   Electrodynamic effects in plasmonic nanolenses [J].
Dai, Jianhua ;
Cajko, Frantisek ;
Tsukerman, Igor ;
Stockman, Mark I. .
PHYSICAL REVIEW B, 2008, 77 (11)
[7]   Electromagnetic theories of surface-enhanced Raman spectroscopy [J].
Ding, Song-Yuan ;
You, En-Ming ;
Tian, Zhong-Qun ;
Moskovits, Martin .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :4042-4076
[8]   Interpretation of infrared and Raman spectra of amorphous carbon nitrides [J].
Ferrari, AC ;
Rodil, SE ;
Robertson, J .
PHYSICAL REVIEW B, 2003, 67 (15)
[9]  
Fitzgerald J. M., 2017, ARXIV171010157V2
[10]   Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates [J].
Guer, Fatih N. ;
Schwarz, Friedrich W. ;
Ye, Jingjing ;
Diez, Stefan ;
Schmidt, Thorsten L. .
ACS NANO, 2016, 10 (05) :5374-5382