Positive radial solutions to classes of singular problems on the exterior domain of a ball

被引:23
作者
Lee, Eun Kyoung [1 ]
Shivaji, R. [2 ]
Son, Byungjae [2 ]
机构
[1] Pusan Natl Univ, Dept Math Educ, Busan, South Korea
[2] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27412 USA
基金
新加坡国家研究基金会;
关键词
Nonlinear boundary conditions; Singular problems; Exterior domains; Positive radial solutions; ELLIPTIC-EQUATIONS; MULTIPLICITY; UNIQUENESS;
D O I
10.1016/j.jmaa.2015.09.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study positive radial solutions to singular boundary value problems of the form: {-Delta u = lambda K(vertical bar x vertical bar) f(u)/u(alpha), in Omega, partial derivative u/partial derivative eta + (c) over tilde (u)u = 0, vertical bar x vertical bar = r(0), u(x) -> 0, vertical bar x vertical bar -> infinity, where Delta u := div(del u) is the Laplacian operator of u, Omega = {x is an element of R-N vertical bar x vertical bar > r(0) > 0, N > 2}, lambda > 0, K is an element of C([r(0), infinity), (0, infinity)) is such that K(s) <= 1/s(N+beta) for s >> 1 for some (beta) over cap > 1, alpha < min{1, <(beta)over cap>/N-2} and partial derivative u/partial derivative eta is the outward normal derivative of u on vertical bar x vertical bar = r(0). Here, f is an element of C-1 ([0, infinity), R) is such that f(s)/s(1+alpha) -> 0 as s -> infinity, and (c) over tilde is an element of C([0, infinity), (0, infinity)). We analyse the cases when (a) f(0) > 0 and (b) f (0) < 0. We discuss existence, non-existence, multiplicity and uniqueness results. We prove our existence results by the method of sub and supersolutions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1597 / 1611
页数:15
相关论文
共 12 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
[Anonymous], 1987, Lecture Notes in Pure and Appl. Math.
[3]   POSITIVE RADIAL SOLUTIONS FOR ELLIPTIC EQUATIONS ON EXTERIOR DOMAINS WITH NONLINEAR BOUNDARY CONDITIONS [J].
Butler, Dagny ;
Ko, Eunkyung ;
Lee, Eun Kyoung ;
Shivaji, R. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2713-2731
[4]   A uniqueness result for a singular nonlinear eigenvalue problem [J].
Castro, Alfonso ;
Ko, Eunkyung ;
Shivaji, R. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (04) :739-744
[5]   A three solution theorem for singular nonlinear elliptic boundary value problems [J].
Dhanya, R. ;
Ko, Eunkyung ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :598-612
[6]   Existence results for classes of infinite semipositone problems [J].
Goddard, Jerome, II ;
Lee, Eun Kyoung ;
Sankar, Lakshmi ;
Shivaji, R. .
BOUNDARY VALUE PROBLEMS, 2013,
[7]   Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion [J].
Gordon, Peter V. ;
Ko, Eunkyung ;
Shivaji, R. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 :51-57
[8]   MULTIPLICITY RESULTS FOR CLASSES OF SINGULAR PROBLEMS ON AN EXTERIOR DOMAIN [J].
Ko, Eunkyoung ;
Lee, Eun Kyoung ;
Shivaji, R. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) :5153-5166
[9]   Uniqueness of positive solutions for a singular nonlinear eigenvalue problem when a parameter is large [J].
Ko, Eunkyung ;
Lee, Eun Kyoung ;
Shivaji, R. ;
Son, Byungjae .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (01) :179-184
[10]   Multiplicity Results for Classes of Infinite Positone Problems [J].
Ko, Eunkyung ;
Lee, Eun Kyoung ;
Shivaji, R. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (03) :305-318