Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient

被引:51
作者
Carter, Rachel [1 ,2 ]
Love, Corey T. [1 ]
机构
[1] US Naval, Res Lab, Div Chem, Washington, DE 20375 USA
[2] US Naval, Res Lab, NRC NRL Cooperat Res Associate, Washington, DE 20375 USA
关键词
thermal gradient; lithium plating; lithium dendrite; electrochemical impedance spectroscopy; impedance diagnostics; battery safety; thermal management; TEMPERATURE; METAL; CELL; GRAPHITE; BEHAVIOR; ISSUES; STATE;
D O I
10.1021/acsami.8b09131
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Li-ion battery safety is often threatened by undesirable lithium metal electrodeposition or dendrite growth, during charging. The unpredictable and complex onset of widely ranging lithium morphologies limits reproducibility, making prevention and detection strategies difficult to assess. This work blends the fundamentals of classical metallurgical dendrite growth with traditional Li-ion battery charging, to prove the ability to modulate lithium metal deposition through an applied interelectrode thermal gradient. With NMC (nickel-manganese-cobalt) cathode warmed to 40 degrees C and graphite anode cooled to 0 degrees C, irreversible lithium plating is observed within 10 cycles, and complete cell deactivation within 20 cycles. The stages of failure over these first 20 cycles are assessed with electrochemical impedance spectroscopy. This work provides a technique for accelerated aging and the reliable study of lithium deposition in Li-ion batteries.
引用
收藏
页码:26328 / 26334
页数:7
相关论文
共 36 条
[11]   Understanding undesirable anode lithium plating issues in lithium-ion batteries [J].
Liu, Qianqian ;
Du, Chunyu ;
Shen, Bin ;
Zuo, Pengjian ;
Cheng, Xinqun ;
Ma, Yulin ;
Yin, Geping ;
Gao, Yunzhi .
RSC ADVANCES, 2016, 6 (91) :88683-88700
[12]   Lithium-Ion Cell Fault Detection by Single-Point Impedance Diagnostic and Degradation Mechanism Validation for Series-Wired Batteries Cycled at 0 °C [J].
Love, Corey T. ;
Dubarry, Matthieu ;
Reshetenko, Tatyana ;
Devie, Arnaud ;
Spinner, Neil ;
Swider-Lyons, Karen E. ;
Rocheleau, Richard .
ENERGIES, 2018, 11 (04)
[13]   Innovating Safe Lithium-Ion Batteries Through Basic to Applied Research [J].
Love, Corey T. ;
Buesser, Christopher ;
Johannes, Michelle D. ;
Swider-Lyons, Karen E. .
JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (01)
[14]   Observation of Lithium Dendrites at Ambient Temperature and Below [J].
Love, Corey T. ;
Baturina, Olga A. ;
Swider-Lyons, Karen E. .
ECS ELECTROCHEMISTRY LETTERS, 2015, 4 (02) :A24-A27
[15]   Impedance Diagnostic for Overcharged Lithium-Ion Batteries [J].
Love, Corey T. ;
Swider-Lyons, Karen .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (04) :A53-A56
[16]   Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators [J].
Love, Corey T. .
JOURNAL OF POWER SOURCES, 2011, 196 (05) :2905-2912
[17]   Experimental triggers for internal short circuits in lithium-ion cells [J].
Orendorff, Christopher J. ;
Roth, E. Peter ;
Nagasubramanian, Ganesan .
JOURNAL OF POWER SOURCES, 2011, 196 (15) :6554-6558
[18]   Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal [J].
Pei, Allen ;
Zheng, Guangyuan ;
Shi, Feifei ;
Li, Yuzhang ;
Cui, Yi .
NANO LETTERS, 2017, 17 (02) :1132-1139
[19]   A materials perspective on Li-ion batteries at extreme temperatures [J].
Rodrigues, Marco-Tulio F. ;
Babu, Ganguli ;
Gullapalli, Hemtej ;
Kalaga, Kaushik ;
Sayed, Farheen N. ;
Kato, Keiko ;
Joyner, Jarin ;
Ajayan, Pulickel M. .
NATURE ENERGY, 2017, 2 (08)
[20]   Analysis of internal short-circuit in a lithium ion cell [J].
Santhanagopalan, Shriram ;
Ramadass, Premanand ;
Zhang, John .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :550-557