Exponential Convergence in Probability for Empirical Means of Levy Processes

被引:0
作者
Hu, Shu-lan [1 ]
Yao, Nian [2 ]
机构
[1] Zhongnan Univ Econ & Law, Dept Stat, Wuhan 430073, Peoples R China
[2] Wuhan Univ, Dept Math & Stat, Wuhan 430072, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2010年 / 26卷 / 03期
关键词
Levy processes; exponential convergence in probability; large deviations; functions with uniform mean; ADDITIVE-FUNCTIONALS; MARKOV-PROCESSES; LARGE DEVIATIONS; BROWNIAN-MOTION; LOWER BOUNDS;
D O I
10.1007/s10255-010-0013-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X(t))(t >= 0) be a Levy process taking values in R(d) with absolutely continuous marginal distributions. Given a real measurable function f on R(d) in Kato's class, we show that the empirical mean 1/t integral(t)(0)f(X(s))ds converges to a constant z in probability with an exponential rate if and only if f has a uniform mean z. This result improves a classical result of Kahane et al. and generalizes a similar result of L. Wu from the Brownian Motion to general Levy processes.
引用
收藏
页码:481 / 488
页数:8
相关论文
共 11 条