Pseudo-differential operator related to Hankel transform on Gelfand-Shilov spaces of type W

被引:2
作者
Mahato, Kanailal [1 ]
Pasawan, Durgesh [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
关键词
Hankel transform; Pseudo-differential operator; Gelfand-Shilov space; W-type space; WAVELET TRANSFORM;
D O I
10.1007/s43036-021-00142-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus on the continuity of Hankel transform and pseudo-differential operator related to that Hankel transform on some appropriately constructed Gelfand-Shilov spaces of type W.
引用
收藏
页数:13
相关论文
共 32 条
[1]   Numerical modeling of cylindrically symmetric nonlinear self-focusing using an adaptive fast Hankel split-step method [J].
Banerjee, PP ;
Nehmetallah, G ;
Chatterjee, MR .
OPTICS COMMUNICATIONS, 2005, 249 (1-3) :293-300
[2]  
Betancor J. J., 1991, Int. J. Math. Math. Sci., V14, P269, DOI [10.1155/S0161171291000303, DOI 10.1155/S0161171291000303]
[3]   Causality, stokes' wave equation, and acoustic pulse propagation in a viscous fluid [J].
Buckingham, MJ .
PHYSICAL REVIEW E, 2005, 72 (02)
[4]   ENTIRE EXTENSIONS AND EXPONENTIAL DECAY FOR SEMILINEAR ELLIPTIC EQUATIONS [J].
Cappiello, Marco ;
Gramchev, Todor ;
Rodino, Luigi .
JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 :339-367
[5]   Characterizations of the Gelfand-Shilov spaces via Fourier transforms [J].
Chung, J ;
Chung, SY ;
Kim, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2101-2108
[6]   GELFAND-SHILOV SPACES FOR THE HANKEL TRANSFORM [J].
DURAN, AJ .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (02) :137-151
[7]  
Gelfand I.M., 1967, Generalized Functions, VVolume 3
[8]  
GELFAND IM, 1955, DOKL AKAD NAUK SSSR+, V102, P1065
[10]  
Hirschman II., 1961, J. Anal. Math, V8, P307, DOI [DOI 10.1007/BF02786855, 10.1007/BF02786854, DOI 10.1007/BF02786854]