Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets

被引:51
作者
Zhu, Tianbin [1 ,2 ]
Li, Yawei [1 ]
Sang, Shaobai [1 ]
Xie, Zhipeng [2 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Thermal shock resistance; Microstructure; MgO-C pellets; MgO-C refractories; IN-SITU FORMATION; LOW-CARBON; MECHANICAL-PROPERTIES; NANO CARBON; MICROSTRUCTURAL EVOLUTION; CHEMICAL-REACTIONS; AL; NANOCARBON; FRACTURE; ANTIOXIDANTS;
D O I
10.1016/j.matdes.2017.03.054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnesia-graphite (MgO-C) refractories with 12-20 wt% carbon contents are extensively used for the taphole sleeve bricks, bottom blowing elements, slag line bricks, etc. in steelmaking operations. To reduce the carbon content but to have the same or even superior thermal shock resistance with commercial available material compositions (14 wt% flaky graphite), we report here a new approach based on the granulating treatment of flaky graphite to improve the thermal shock resistance of MgO-C refractories (10 wt% flaky graphite). MgO-C pellets are firstly prepared by the crushing granulation method, and then introduced into such refractories. Addition of MgO-C pellets has no apparent influence on their flexural strength, but enhances their flexural strength after thermal shocks and residual strength ratio. Particularly, when 10 wt% flaky graphite of the specimens is replaced totally by MgO-C pellets, their thermal shock resistance is superior to that of the specimens containing 14 wt% flaky graphite. This new method opens up possibilities to obtain MgO-C refractories with improved thermal shock resistance. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 35 条
  • [1] Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions
    Aneziris, C. G.
    Hubalkova, J.
    Barabas, R.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (01) : 73 - 78
  • [2] Aneziris C.G., 2003, Interceram, P22
  • [3] Nano carbon containing MgO-C refractory: Effect of graphite content
    Bag, Mousom
    Adak, Sukumar
    Sarkar, Ritwik
    [J]. CERAMICS INTERNATIONAL, 2012, 38 (06) : 4909 - 4914
  • [4] Study on low carbon containing MgO-C refractory: Use of nano carbon
    Bag, Mousom
    Adak, Sukumar
    Sarkar, Ritwik
    [J]. CERAMICS INTERNATIONAL, 2012, 38 (03) : 2339 - 2346
  • [5] Baudín C, 1999, J AM CERAM SOC, V82, P3529, DOI 10.1111/j.1151-2916.1999.tb02276.x
  • [6] Influence of chemical reactions in magnesia-graphite refractories:: II, effects of aluminum and graphite contents in generic products
    Baudín, C
    Alvarez, C
    Moore, RE
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (12) : 3539 - 3548
  • [7] Study on variation of graphite content in N220 nanocarbon containing low carbon MgO-C refractory
    Behera, S.
    Sarkar, R.
    [J]. IRONMAKING & STEELMAKING, 2016, 43 (02) : 130 - 136
  • [8] Nano carbon containing low carbon magnesia carbon refractory: an overview
    Behera, Satyananda
    Sarkar, Ritwik
    [J]. PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2016, 52 (03) : 467 - 474
  • [9] Phase and microstructural evolution based on Al, Si and TiO2 reactions with a MgO-C resin-bonded refractory
    Bitencourt, C. S.
    Luz, A. P.
    Pagliosa, C.
    Pandolfelli, V. C.
    [J]. CERAMICS INTERNATIONAL, 2016, 42 (15) : 16480 - 16490
  • [10] Spinel-containing alumina-based refractory castables
    Braulio, M. A. L.
    Rigaud, M.
    Buhr, A.
    Parr, C.
    Pandolfelli, V. C.
    [J]. CERAMICS INTERNATIONAL, 2011, 37 (06) : 1705 - 1724