Global optimization techniques for mixed complementarity problems

被引:33
作者
Kanzow, C [1 ]
机构
[1] Univ Hamburg, Inst Appl Math, D-20146 Hamburg, Germany
关键词
mixed complementarity problems; semismooth Newton method; global optimization; tunneling method; filled function method;
D O I
10.1023/A:1008331803982
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the theoretical and numerical properties of two global optimization techniques for the solution of mixed complementarity problems. More precisely, using a standard semismooth Newton-type method as a basic solver for complementarity problems, we describe how the performance of this method can be improved by incorporating two well-known global optimization algorithms, namely a tunneling and a filled function method. These methods are tested and compared with each other on a couple of very difficult test examples.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
[1]   Global Optimization Techniques for Mixed Complementarity Problems [J].
Christian Kanzow .
Journal of Global Optimization, 2000, 16 :1-21
[2]   Extended Lorentz cones and mixed complementarity problems [J].
S. Z. Németh ;
G. Zhang .
Journal of Global Optimization, 2015, 62 :443-457
[3]   Global optimization of mixed integer signomial fractional programing problems [J].
Nejad, Jaleh Shirin ;
Saraj, Mansour ;
Yancheshmeh, Sara Shokrolahi ;
Harchegani, Fatemeh Kiany .
MEASUREMENT & CONTROL, 2024, 57 (08) :1211-1217
[4]   Global solution of mixed-integer dynamic optimization problems [J].
Chachuat, B ;
Singer, AB ;
Barton, PI .
European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b :133-138
[5]   Feasible descent algorithms for mixed complementarity problems [J].
Ferris, MC ;
Kanzow, C ;
Munson, TS .
MATHEMATICAL PROGRAMMING, 1999, 86 (03) :475-497
[6]   Extended Lorentz cones and mixed complementarity problems [J].
Nemeth, S. Z. ;
Zhang, G. .
JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (03) :443-457
[7]   Continuation Newton methods with deflation techniques for global optimization problems [J].
Luo, Xin-long ;
Xiao, Hang ;
Zhang, Sen .
NUMERICAL ALGORITHMS, 2024, 97 (04) :1715-1790
[8]   Compressional fractures considered as contact problems and mixed complementarity problems [J].
De Bremaecker, JC ;
Ferris, MC ;
Ralph, D .
ENGINEERING FRACTURE MECHANICS, 2000, 66 (03) :287-303
[9]   Parallel Scalable Algorithms with Mixed Local-Global Strategy for Global Optimization Problems [J].
Barkalov, Konstantin ;
Ryabov, Vasily ;
Sidorov, Sergey .
METHODS AND TOOLS OF PARALLEL PROGRAMMING MULTICOMPUTERS, 2010, 6083 :232-240
[10]   Univariate parameterization for global optimization of mixed-integer polynomial problems [J].
Teles, Joao P. ;
Castro, Pedro M. ;
Matos, Henrique A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 229 (03) :613-625