LinkPred: a high performance library for link prediction in complex networks

被引:1
|
作者
Kerrache, Said [1 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh, Saudi Arabia
关键词
Link prediction; Complex networks; Software library; High performance computing; Graph embedding; COMMUNITY STRUCTURE;
D O I
10.7717/peerj-cs.521
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of determining the likelihood of the existence of a link between two nodes in a network is called link prediction. This is made possible thanks to the existence of a topological structure in most real-life networks. In other words, the topologies of networked systems such as the World Wide Web, the Internet, metabolic networks, and human society are far from random, which implies that partial observations of these networks can be used to infer information about undiscovered interactions. Significant research efforts have been invested into the development of link prediction algorithms, and some researchers have made the implementation of their methods available to the research community. These implementations, however, are often written in different languages and use different modalities of interaction with the user, which hinders their effective use. This paper introduces LinkPred, a high-performance parallel and distributed link prediction library that includes the implementation of the major link prediction algorithms available in the literature. The library can handle networks with up to millions of nodes and edges and offers a unified interface that facilitates the use and comparison of link prediction algorithms by researchers as well as practitioners.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Link Prediction in Complex Hyper-Networks Leveraging HyperCentrality
    Nandini, Y. V.
    Lakshmi, T. Jaya
    Enduri, Murali Krishna
    Jilani, Mohd Zairul Mazwan
    IEEE ACCESS, 2025, 13 : 12239 - 12254
  • [22] Adversarial link deception against the link prediction in complex networks
    Jiang, Zhongyuan
    Tang, Xiaoke
    Zeng, Yong
    Li, Jinku
    Ma, Jianfeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 577
  • [23] Probabilistic Local Link Prediction in Complex Networks
    Martinez, Victor
    Berzal, Fernando
    Cubero, Juan-Carlos
    SCALABLE UNCERTAINTY MANAGEMENT (SUM 2017), 2017, 10564 : 391 - 396
  • [24] A Combinatory Framework for Link Prediction in Complex Networks
    Dimitriou, Paraskevas
    Karyotis, Vasileios
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [25] Link prediction based on the mutual information with high-order clustering structure of nodes in complex networks
    Yao, Yabing
    Cheng, Tianyu
    Li, Xiaoqiang
    He, Yangyang
    Yang, Fan
    Li, Tongfeng
    Liu, Zeguang
    Xu, Zhipeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 610
  • [26] Link prediction in directed complex networks: combining similarity-popularity and path patterns mining
    Benhidour, Hafida
    Almeshkhas, Lama
    Kerrache, Said
    APPLIED INTELLIGENCE, 2024, 54 (17-18) : 8634 - 8665
  • [27] Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks
    Ma, Chuang
    Bao, Zhong-Kui
    Zhang, Hai-Feng
    PHYSICS LETTERS A, 2017, 381 (39) : 3369 - 3376
  • [28] Fast approach for link prediction in complex networks based on graph decomposition
    Saifi, Abdelhamid
    Nouioua, Farid
    Akhrouf, Samir
    EVOLVING SYSTEMS, 2024, 15 (02) : 303 - 320
  • [29] Link Prediction Model Based on the Topological Feature Learning for Complex Networks
    Salam Jayachitra Devi
    Buddha Singh
    Arabian Journal for Science and Engineering, 2020, 45 : 10051 - 10065
  • [30] Seven-Layer Model in Complex Networks Link Prediction: A Survey
    Wang, Hui
    Le, Zichun
    SENSORS, 2020, 20 (22) : 1 - 33