Soliton trains and vortex streets as a form of Cerenkov radiation in trapped Bose-Einstein condensates

被引:17
作者
Carretero-Gonzalez, R.
Kevrekidis, P. G.
Frantzeskakis, D. J.
Malomed, B. A. [1 ]
Nandi, S.
Bishop, A. R.
机构
[1] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[2] San Diego State Univ, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
[3] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[5] Univ Athens, Dept Phys, GR-15784 Athens, Greece
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[7] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
Bose-Einstein condensation; solitons; vortices; nucleation; matter waves;
D O I
10.1016/j.matcom.2006.10.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We numerically study the nucleation of gray solitons and vortex-antivortex pairs created by a moving impurity in, respectively, 1D and 2D Bose-Einstein condensates (BECs) confined by a parabolic potential. The simulations emulate the motion of a localized laser-beam spot through the trapped condensate. Our results for the 1D case indicate that, due to the inhomogeneity of the BEC density, the critical speed for nucleation, as a function of the condensate density displays two distinct dependences. In particular, the square root of the critical density for nucleation as a function of speed displays two different linear regimes corresponding to small and large velocities. Effectively, the emission of gray solitons and vortex-antivortex pairs occurs for any velocity of the impurity, as any given velocity will be supercritical in a region with a sufficiently small density. At longer times, the first nucleation is followed by generation of an array of solitons, in 1D ("soliton train") or vortex pairs in 2D ("vortex street") by the moving object. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 34 条
[1]   Flow of liquid helium II [J].
Allen, JF ;
Misener, AD .
NATURE, 1938, 141 :75-75
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]   Motion of a heavy impurity through a Bose-Einstein condensate [J].
Astrakharchik, GE ;
Pitaevskii, LP .
PHYSICAL REVIEW A, 2004, 70 (01) :013608-1
[4]   Vortex nucleation by a moving ion in a Bose condensate [J].
Berloff, NG .
PHYSICS LETTERS A, 2000, 277 (4-5) :240-244
[5]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[6]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[7]  
CERENKOV PA, 1964, NOBEL LECT PHYS
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[10]   Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose-Einstein condensate [J].
Dutton, Z ;
Budde, M ;
Slowe, C ;
Hau, LV .
SCIENCE, 2001, 293 (5530) :663-668