Finite-time estimation algorithms for LPV discrete-time systems with application to output feedback stabilization

被引:7
作者
Chaib-Draa, Khadidja [1 ]
Zemouche, Ali [2 ]
Bedouhene, Fazia [3 ]
Rajamani, Rajesh [4 ]
Wang, Yan [5 ]
Karimi, Hamid Reza [6 ]
Laleg-Kirati, Taous Meriem [7 ]
机构
[1] Univ Luxembourg, Belval, Luxembourg
[2] Univ Lorraine, CRAN, CNRS, UMR 7039, F-54400 Cosnes Et Romain, France
[3] Univ Mouloud Mammeri Tizi Ouzou, Lab Math Pures & Appl, Tizi Ouzou, Algeria
[4] Univ Minnesota, Dept Mech Engn, Lab Innovat Sensing Estimat & Control, 111 Church St SE, Minneapolis, MN 55455 USA
[5] Auris Hlth Inc, 150 Shoreline Dr, Redwood City, CA 94065 USA
[6] Politecn Milan, Dept Mech Engn, Via La Masa 1, I-20156 Milan, Italy
[7] KAUST, Dept Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
基金
美国国家科学基金会;
关键词
Estimation; Observer design; LMI approach; LPV systems; Output feedback stabilization;
D O I
10.1016/j.automatica.2020.109436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with new finite-time estimation algorithms for Linear Parameter Varying (LPV) discrete-time systems and their application to output feedback stabilization. Two exact finite-time estimation schemes are proposed. The first scheme provides a direct and explicit estimation algorithm based on the use of delayed outputs, while the second scheme uses two combined asymptotic observers, connected by a condition of invertibility of a certain time-varying matrix, to recover solution of the LPV system in a finite-time. Furthermore, two stabilization strategies are proposed. The first strategy, called Delayed Inputs/Outputs Feedback (DIOF) stabilization method, is based on the use of the explicit estimation algorithm. The second technique, called Two Connected Observers Feedback (2-COF) stabilization method, is based on the use of two combined observers providing exact finite-time estimation. A numerical example is given to show the validity and effectiveness of the proposed algorithms by simulation. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 31 条
[21]  
Sename O, 2013, ROBUST CONTROL LINEA
[22]   An improved approach to robust stability analysis and controller synthesis for LPV systems [J].
Song, Lei ;
Yang, Jianying .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (13) :1574-1586
[23]   Static output feedback control of positive linear systems with output time delays [J].
Van Thanh Huynh ;
Nguyen, Cuong M. ;
Hieu Trinh .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (15) :2815-2823
[24]  
Wang Y., 2019, 2019 C DEC CONTR NIC
[25]   A quadratic matrix inequality based PID controller design for LPV systems [J].
Wang, Yan ;
Rajamani, Rajesh ;
Zemouche, Ali .
SYSTEMS & CONTROL LETTERS, 2019, 126 :67-76
[26]   Observer Design for Parameter Varying Differentiable Nonlinear Systems, With Application to Slip Angle Estimation [J].
Wang, Yan ;
Rajamani, Rajesh ;
Bevly, David M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) :1940-1945
[27]  
Wu F, 1996, INT J ROBUST NONLIN, V6, P983, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO
[28]  
2-C
[29]   A generalized LPV system analysis and control synthesis framework [J].
Wu, F .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (07) :745-759
[30]   Circle criterion-based, H∞, observer design for Lipschitz and monotonic nonlinear systems - Enhanced LMI conditions and constructive discussions [J].
Zemouche, Ali ;
Rajamani, Rajesh ;
Phanomchoeng, Gridsada ;
Boulkroune, Boulaid ;
Rafaralahy, Hugues ;
Zasadzinski, Michel .
AUTOMATICA, 2017, 85 :412-425