Finite-time estimation algorithms for LPV discrete-time systems with application to output feedback stabilization

被引:7
作者
Chaib-Draa, Khadidja [1 ]
Zemouche, Ali [2 ]
Bedouhene, Fazia [3 ]
Rajamani, Rajesh [4 ]
Wang, Yan [5 ]
Karimi, Hamid Reza [6 ]
Laleg-Kirati, Taous Meriem [7 ]
机构
[1] Univ Luxembourg, Belval, Luxembourg
[2] Univ Lorraine, CRAN, CNRS, UMR 7039, F-54400 Cosnes Et Romain, France
[3] Univ Mouloud Mammeri Tizi Ouzou, Lab Math Pures & Appl, Tizi Ouzou, Algeria
[4] Univ Minnesota, Dept Mech Engn, Lab Innovat Sensing Estimat & Control, 111 Church St SE, Minneapolis, MN 55455 USA
[5] Auris Hlth Inc, 150 Shoreline Dr, Redwood City, CA 94065 USA
[6] Politecn Milan, Dept Mech Engn, Via La Masa 1, I-20156 Milan, Italy
[7] KAUST, Dept Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia
基金
美国国家科学基金会;
关键词
Estimation; Observer design; LMI approach; LPV systems; Output feedback stabilization;
D O I
10.1016/j.automatica.2020.109436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with new finite-time estimation algorithms for Linear Parameter Varying (LPV) discrete-time systems and their application to output feedback stabilization. Two exact finite-time estimation schemes are proposed. The first scheme provides a direct and explicit estimation algorithm based on the use of delayed outputs, while the second scheme uses two combined asymptotic observers, connected by a condition of invertibility of a certain time-varying matrix, to recover solution of the LPV system in a finite-time. Furthermore, two stabilization strategies are proposed. The first strategy, called Delayed Inputs/Outputs Feedback (DIOF) stabilization method, is based on the use of the explicit estimation algorithm. The second technique, called Two Connected Observers Feedback (2-COF) stabilization method, is based on the use of two combined observers providing exact finite-time estimation. A numerical example is given to show the validity and effectiveness of the proposed algorithms by simulation. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Observers for systems with nonlinearities satisfying incremental quadratic constraints [J].
Acikmese, Behcet ;
Corless, Martin .
AUTOMATICA, 2011, 47 (07) :1339-1348
[2]   Increasing-gain observers for nonlinear systems: Stability and design [J].
Alessandri, Angelo ;
Rossi, Anna .
AUTOMATICA, 2015, 57 :180-188
[3]   Observer-based control of systems with slope-restricted nonlinearities [J].
Arcak, M ;
Kokotovic, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) :1146-1150
[4]   Parameter-dependent state observer design for affine LPV systems [J].
Bara, GI ;
Daafouz, J ;
Kratz, F ;
Ragot, J .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (16) :1601-1611
[5]   Output feedback stabilization of switching discrete-time linear systems with parameter uncertainties [J].
Bibi, Hamza ;
Bedouhene, Fazia ;
Zemouche, Ali ;
Karimi, Hamid Reza ;
Kheloufi, Houria .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (14) :5895-5918
[6]   Static Output Stabilisation of Singular LPV Systems: LMI Formulation [J].
Chadli, M. ;
Darouach, M. ;
Daafouz, J. .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :4793-4796
[7]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[8]  
Ebihara Y, 2015, COMMUN CONTROL ENG, P1, DOI 10.1007/978-1-4471-6606-1
[9]   Control of Nonlinear and LPV Systems: Interval Observer-Based Framework [J].
Efimov, Denis ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :773-778
[10]   A continuous-time observer which converges in finite time [J].
Engel, R ;
Kreisselmeier, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) :1202-1204