Dislocation dynamics simulation of thermal annealing of a dislocation loop microstructure

被引:21
作者
Breidi, A. [1 ]
Dudarev, S. L. [1 ]
机构
[1] UK Atom Energy Author, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
关键词
Dislocation loops; Dislocation network; Discrete dislocation dynamics; Post-irradiation annealing; Thermal evolution of dislocations; SELF-INTERSTITIAL ATOMS; ONE-DIMENSIONAL MOTION; NEUTRON-IRRADIATION; ALPHA-IRON; CONSERVATIVE CLIMB; RADIATION DEFECTS; VACANCY MIGRATION; IN-SITU; RECOVERY; CLUSTERS;
D O I
10.1016/j.jnucmat.2022.153552
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal evolution and elevated temperature annealing of the dislocation microstructure of an irradiated metal, represented by an ensemble of elastically interacting interstitial dislocation loops, is explored using discrete dislocation dynamics simulations. The two fundamental microscopic processes driving the evolution of dislocations are the pipe diffusion of atoms along the dislocation lines, giving rise to the dislocation self-climb, and bulk diffusion of vacancies, resulting in the conventional dislocation climb. Simulations show that the coalescence and coarsening of the prismatic dislocation loop microstructure, observed at lower temperatures, is driven primarily by the dislocation self-climb. In tungsten, dislocation self-climb gives rise to a pronounced change in the dislocation loop microstructure at temperatures close to 800 C , see Ferroni et al. (2015) [1], whereas a similar microstructural transformation of the dislocation network driven by self-climb in alpha-iron is predicted to occur at ~270 C . Simulations also show that the diffusion of vacancies in the crystal bulk is able to explain the observed annihilation rates of interstitial loops in tungsten.Crown Copyright (C) 2022 Published by Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 117 条
[61]   Influence of carbon-vacancy interaction on carbon and vacancy diffusivity in tungsten [J].
Liu, Yue-Lin ;
Dai, Zhen-Hong ;
Wang, Wei-Tian .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 83 :1-4
[62]   Interaction of C with vacancy in W: A first-principles study [J].
Liu, Yue-Lin ;
Zhou, Hong-Bo ;
Zhang, Ying ;
Lu, Guang-Hong ;
Luo, Guang-Nan .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (11) :3213-3217
[63]   Nonuniversal structure of point defects in face-centered cubic metals [J].
Ma, Pui-Wai ;
Dudarev, S. L. .
PHYSICAL REVIEW MATERIALS, 2021, 5 (01)
[64]   Multiscale analysis of dislocation loops and voids in tungsten [J].
Ma, Pui-Wai ;
Mason, D. R. ;
Dudarev, S. L. .
PHYSICAL REVIEW MATERIALS, 2020, 4 (10)
[65]   Effect of stress on vacancy formation and migration in body-centered-cubic metals [J].
Ma, Pui-Wai ;
Dudarev, S. L. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (06)
[66]   Universality of point defect structure in body-centered cubic metals [J].
Ma, Pui-Wai ;
Dudarev, S. L. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (01)
[67]   Long-term microstructural evolution of tungsten under heat and neutron loads [J].
Mannheim, A. ;
van Dommelen, J. A. W. ;
Geers, M. G. D. .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
[68]   Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron [J].
Marinica, M. -C. ;
Willaime, F. ;
Crocombette, J. -P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[69]   Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils [J].
Mason, D. R. ;
Yi, X. ;
Kirk, M. A. ;
Dudarev, S. L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (37)
[70]   Parameter-free quantitative simulation of high-dose microstructure and hydrogen retention in ion-irradiated tungsten [J].
Mason, Daniel R. ;
Granberg, Fredric ;
Boleininger, Max ;
Schwarz-Selinger, Thomas ;
Nordlund, Kai ;
Dudarev, Sergei L. .
PHYSICAL REVIEW MATERIALS, 2021, 5 (09)