Dislocation dynamics simulation of thermal annealing of a dislocation loop microstructure

被引:21
作者
Breidi, A. [1 ]
Dudarev, S. L. [1 ]
机构
[1] UK Atom Energy Author, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
关键词
Dislocation loops; Dislocation network; Discrete dislocation dynamics; Post-irradiation annealing; Thermal evolution of dislocations; SELF-INTERSTITIAL ATOMS; ONE-DIMENSIONAL MOTION; NEUTRON-IRRADIATION; ALPHA-IRON; CONSERVATIVE CLIMB; RADIATION DEFECTS; VACANCY MIGRATION; IN-SITU; RECOVERY; CLUSTERS;
D O I
10.1016/j.jnucmat.2022.153552
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal evolution and elevated temperature annealing of the dislocation microstructure of an irradiated metal, represented by an ensemble of elastically interacting interstitial dislocation loops, is explored using discrete dislocation dynamics simulations. The two fundamental microscopic processes driving the evolution of dislocations are the pipe diffusion of atoms along the dislocation lines, giving rise to the dislocation self-climb, and bulk diffusion of vacancies, resulting in the conventional dislocation climb. Simulations show that the coalescence and coarsening of the prismatic dislocation loop microstructure, observed at lower temperatures, is driven primarily by the dislocation self-climb. In tungsten, dislocation self-climb gives rise to a pronounced change in the dislocation loop microstructure at temperatures close to 800 C , see Ferroni et al. (2015) [1], whereas a similar microstructural transformation of the dislocation network driven by self-climb in alpha-iron is predicted to occur at ~270 C . Simulations also show that the diffusion of vacancies in the crystal bulk is able to explain the observed annihilation rates of interstitial loops in tungsten.Crown Copyright (C) 2022 Published by Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 117 条
[1]   Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium [J].
Alexander, R. ;
Marinica, M. -C. ;
Proville, L. ;
Willaime, F. ;
Arakawa, K. ;
Gilbert, M. R. ;
Dudarev, S. L. .
PHYSICAL REVIEW B, 2016, 94 (02)
[2]  
Allnatt AR., 1993, atomic transport in solids
[3]   RECOVERY IN NEUTRON-IRRADIATED TUNGSTEN [J].
ANAND, MS ;
PANDE, BM ;
AGARWALA, RP .
RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1978, 39 (3-4) :149-155
[4]  
Anderson P. M., 2017, Theory of Dislocations
[5]  
[Anonymous], 2020, Radiation-Induced Damage in Austenitic Structural Steels Used in Nuclear Reactors, Vsecond, P57
[6]  
[Anonymous], 2006, Computer Simulations of Dislocations
[7]   Observation of the one-dimensional diffusion of nanometer-sized dislocation loops [J].
Arakawa, K. ;
Ono, K. ;
Isshiki, M. ;
Mimura, K. ;
Uchikoshi, M. ;
Mori, H. .
SCIENCE, 2007, 318 (5852) :956-959
[8]   Effects of chromium on the one-dimensional motion of interstitial-type dislocation loops in iron [J].
Arakawa, K ;
Hatanaka, M ;
Mori, H ;
Ono, K .
JOURNAL OF NUCLEAR MATERIALS, 2004, 329 :1194-1198
[9]   Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors [J].
Arakawa, K. ;
Amino, T. ;
Mori, H. .
ACTA MATERIALIA, 2011, 59 (01) :141-145
[10]   Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten [J].
Armstrong, D. E. J. ;
Edmondson, P. D. ;
Roberts, S. G. .
APPLIED PHYSICS LETTERS, 2013, 102 (25)