On-chip photonic Fourier transform with surface plasmon polaritons

被引:60
作者
Kou, Shan Shan [1 ,2 ,3 ]
Yuan, Guanghui [4 ]
Wang, Qian [5 ]
Du, Luping [6 ,7 ]
Balaur, Eugeniu [1 ,2 ]
Zhang, Daohua [8 ]
Tang, Dingyuan [8 ]
Abbey, Brian [1 ,2 ]
Yuan, Xiao-Cong [6 ,7 ]
Lin, Jiao [3 ,6 ,7 ,9 ]
机构
[1] La Trobe Univ, La Trobe Inst Mol Sci LIMS, Dept Chem & Phys, Melbourne, Vic 3086, Australia
[2] Australian Res Council, Ctr Excellence Adv Mol Imaging, Melbourne, Vic, Australia
[3] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[4] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
[5] ASTAR, Inst Mat Res & Engn, 3 Res Link, Singapore 117602, Singapore
[6] Shenzhen Univ, Nanophoton Res Ctr, Shenzhen 518060, Peoples R China
[7] Shenzhen Univ, Coll Optoelect Engn, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
[8] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[9] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
来源
LIGHT-SCIENCE & APPLICATIONS | 2016年 / 5卷
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
diffraction; Fourier optics; optical computing; optical information processing; surface plasmon polaritons; LIGHT; METAMATERIALS; PHASE; WAVE;
D O I
10.1038/lsa.2016.34
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Fourier transform (FT), a cornerstone of optical processing, enables rapid evaluation of fundamental mathematical operations, such as derivatives and integrals. Conventionally, a converging lens performs an optical FT in free space when light passes through it. The speed of the transformation is limited by the thickness and the focal length of the lens. By using the wave nature of surface plasmon polaritons (SPPs), here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 mm, resulting in an increase of speed by four to five orders of magnitude. The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components. The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.
引用
收藏
页码:e16034 / e16034
页数:6
相关论文
共 32 条
[1]  
ARSENAULT HH, 1989, OPTICAL PROCESSING C
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[3]  
Baker B.B., 1950, MATH THEORY HUYGENS, V2nd
[4]  
Born M., 1999, Principles of optics, Vseventh
[5]  
Bracewell Ronald N., 2000, The Fourier Transform and Its Applications
[6]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[7]   Why future supercomputing requires optics [J].
Caulfield, H. John ;
Dolev, Shlomi .
NATURE PHOTONICS, 2010, 4 (05) :261-263
[8]   Three-Dimensional Plasmonic Micro Projector for Light Manipulation [J].
Chang, Chia Min ;
Tseng, Ming Lun ;
Cheng, Bo Han ;
Chu, Cheng Hung ;
Ho, You Zhe ;
Huang, Hsin Wei ;
Lan, Yung-Chiang ;
Huang, Ding-Wei ;
Liu, Ai Qun ;
Tsai, Din Ping .
ADVANCED MATERIALS, 2013, 25 (08) :1118-1123
[9]  
Clemmow P. C, 1996, The Plane Wave Spectrum Representation of Electro-magnetic Fields
[10]   Miniature plasmonic wave plates [J].
Drezet, Aurelien ;
Genet, Cyriaque ;
Ebbesen, Thomas W. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)