Exponential stability and numerical analysis of a thermoelastic diffusion beam with rotational inertia and second sound

被引:11
作者
Aouadi, Moncef [1 ]
Copetti, Maria Ines M. [2 ]
机构
[1] Univ Carthage, UR Syst Dynam & Applicat, Ecole Natl Ingn Bizerte, UR 17ES21, BP 66, Tunis 7035, Tunisia
[2] Univ Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil
关键词
Thermoelastic diffusion beam; Second sound; Exponential decay; Numerical approximation; DYNAMIC CONTACT PROBLEM; TRANSIENT-RESPONSES; VIBRATIONS;
D O I
10.1016/j.matcom.2021.03.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the dynamic behavior of a thermoelastic diffusion beam with rotational inertia and second sound, clamped at one end and free to move between two stops at the other. The contact with the stops is modeled with the normal compliance condition. The system, recently derived by Aouadi (2015), describes the behavior of thermoelastic diffusion thin plates under Cattaneo's law for heat and mass diffusion transmission to remove the physical paradox of infinite propagation speeds of the classical Fourier's and Fick's laws. The system of equations is a coupling of a hyperbolic equation with four parabolic equations. It poses some new mathematical and numerical difficulties due to the lack of regularity and the nonlinear boundary conditions. The exponential stability of the solutions to the contact problem is obtained in the presence of rotational inertia thanks to a structural damping term. We propose a finite element approximation and we prove that the associated discrete energy decays to zero. Finally, we give an error estimate assuming extra regularity on the solution and we present some results of our numerical experiments. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:586 / 613
页数:28
相关论文
共 24 条
[1]   VIBRATIONS OF A NONLINEAR DYNAMIC BEAM BETWEEN TWO STOPS [J].
Andrews, K. T. ;
M'Bengue, M. F. ;
Shillor, M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (01) :23-38
[2]   A dynamic contact problem for a thermoelastic diffusion beam with the rotational inertia [J].
Aouadi, M. ;
Copetti, M. I. M. .
APPLIED NUMERICAL MATHEMATICS, 2018, 126 :113-137
[4]   A CONTACT PROBLEM IN THERMOVISCOELASTIC DIFFUSION THEORY WITH SECOND SOUND [J].
Aouadi, Moncef ;
Copetti, Maria I. M. ;
Fernandez, Jose R. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03) :759-796
[5]   Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory [J].
Aouadi, Moncef ;
Copetti, Maria I. M. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (03) :361-384
[6]   Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin's model [J].
Aouadi, Moncef ;
Miranville, Alain .
ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) :129-160
[7]   A contact problem of a thermoelastic diffusion rod [J].
Aouadi, Moncef .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04) :278-286
[8]   Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model [J].
Bernardi, Christine ;
Copetti, Maria Ines M. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (05) :532-549
[9]   Analysis of dynamic nonlinear thermoviscoelastic beam problems [J].
Berti, A. ;
Copetti, M. I. M. ;
Fernandez, J. R. ;
Naso, M. G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :774-795
[10]  
Berti A., 2014, Z ANGEW MATH PHYS, V2, P1