Numerical simulation of solitary waves on deep water with constant vorticity

被引:0
作者
Dosaev, A. S. [1 ]
Shishina, M., I [2 ]
Troitskaya, Yu, I [1 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, 46 Ulyanov St, Nizhnii Novgorod 603950, Russia
[2] Nizhny Novgorod Planetarium, 20 Revolutsionnaya St, Nizhnii Novgorod 603002, Russia
来源
COMPUTER SIMULATIONS IN PHYSICS AND BEYOND (CSP2017) | 2018年 / 955卷
关键词
FINITE DEPTH; STEEP; FLOW;
D O I
10.1088/1742-6596/955/1/012018
中图分类号
O59 [应用物理学];
学科分类号
摘要
Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.
引用
收藏
页数:6
相关论文
共 9 条
[1]  
[Чаликов Дмитрий Викторович Chalikov D.V.], 2014, [Фундаментальная и прикладная гидрофизика, Fundamental'naya i prikladnaya gidrofizika], V7, P3
[2]   STEEP, STEADY SURFACE-WAVES ON WATER OF FINITE DEPTH WITH CONSTANT VORTICITY [J].
DASILVA, AFT ;
PEREGRINE, DH .
JOURNAL OF FLUID MECHANICS, 1988, 195 :281-302
[3]   Simulation of surface gravity waves in the Dyachenko variables on the free boundary of flow with constant vorticity [J].
Dosaev, A. S. ;
Troitskaya, Yu. I. ;
Shishina, M. I. .
FLUID DYNAMICS, 2017, 52 (01) :58-70
[4]   Explicit equations for two-dimensional water waves with constant vorticity [J].
Ruban, V. P. .
PHYSICAL REVIEW E, 2008, 77 (03)
[5]  
Shishina M.I., 2016, PROCESSES GEOMEDIA, V8, P71
[6]  
Shrira V. I., 1986, Soviet Physics - Doklady, V31, P107
[7]  
SIMMEN JA, 1985, STUD APPL MATH, V73, P35
[8]   STEEP SOLITARY WAVES IN WATER OF FINITE DEPTH WITH CONSTANT VORTICITY [J].
VANDENBROECK, JM .
JOURNAL OF FLUID MECHANICS, 1994, 274 :339-348
[9]   New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface [J].
Zakharov, VE ;
Dyachenko, AI ;
Vasilyev, OA .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2002, 21 (03) :283-291