Adaptive Fault-Tolerant Constrained Control of Cooperative Spacecraft Rendezvous and Docking

被引:49
作者
Sun, Liang [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Inst Artificial Intelligence, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Minist Educ, Sch Automat & Elect Engn, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China
关键词
Space vehicles; Fault tolerance; Fault tolerant systems; Actuators; Attitude control; Materials requirements planning; Closed loop systems; Control input constraint; fault-tolerant control; relative pose control; rendezvous and docking; spacecraft control; RIGID SPACECRAFT; TRACKING CONTROL; ATTITUDE STABILIZATION; PROXIMITY OPERATIONS; CONTROL DESIGN; INPUT; SATURATION;
D O I
10.1109/TIE.2019.2913826
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The relative pose control problem for spacecraft rendezvous and docking missions in the presence of control input constraints, actuators partial failures, and unknown external disturbances is studied in this paper. A smoothly adaptive fault-tolerant constrained controller is developed based on the adaptive nonlinear state feedback method. Different from the traditional fault-tolerant saturated controllers, the proposed control approach explicitly accounts for the control input constraints with straightforward tuning parameters in controller. Meanwhile, the exact knowledge of the actuator failures is not required and uncertain failure information can be rejected. A smooth control signal containing simple saturation functions is designed, and the unknown bounded external disturbances can be rejected by the proposed method. The proposed controller can ensure ultimately, uniformly bounded stability of the closed-loop system, where relative pose and velocities converge to the small neighborhoods of zero. Numerical simulation results demonstrate the effectiveness of the proposed control approach.
引用
收藏
页码:3107 / 3115
页数:9
相关论文
共 33 条
[1]   Bi-objective optimization of a multiple-target active debris removal mission [J].
Berend, Nicolas ;
Olive, Xavier .
ACTA ASTRONAUTICA, 2016, 122 :324-335
[2]   Research on constellation refueling based on formation flying [J].
Bo, Xu ;
Feng, Quansheng .
ACTA ASTRONAUTICA, 2011, 68 (11-12) :1987-1995
[3]   Robust tracking control design for spacecraft under control input saturation [J].
Boskovic, JD ;
Li, SM ;
Mehra, RK .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2004, 27 (04) :627-633
[4]   Robust adaptive variable structure control of spacecraft under control input saturation [J].
Boskovic, JD ;
Li, SM ;
Mehra, RK .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2001, 24 (01) :14-22
[5]   Adaptive Fault-Tolerant Spacecraft Attitude Control Design With Transient Response Control [J].
Bustan, Danyal ;
Sani, S. K. Hosseini ;
Pariz, Naser .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (04) :1404-1411
[6]   A review of space robotics technologies for on-orbit servicing [J].
Flores-Abad, Angel ;
Ma, Ou ;
Pham, Khanh ;
Ulrich, Steve .
PROGRESS IN AEROSPACE SCIENCES, 2014, 68 :1-26
[7]   Adaptive Fault-Tolerant Control of Spacecraft Attitude Dynamics with Actuator Failures [J].
Han, Yu ;
Biggs, James D. ;
Cui, Naigang .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (10) :2033-+
[8]   Unified iterative learning control for flexible structures with input constraints [J].
He, Wei ;
Meng, Tingting ;
He, Xiuyu ;
Ge, Shuzhi Sam .
AUTOMATICA, 2018, 96 :326-336
[9]   Iterative Learning Control for a Flapping Wing Micro Aerial Vehicle Under Distributed Disturbances [J].
He, Wei ;
Meng, Tingting ;
He, Xiuyu ;
Sun, Changyin .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (04) :1524-1535
[10]   Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning [J].
He, Wei ;
Dong, Yiting .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) :1174-1186