Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing

被引:27
作者
Li, Changli [1 ]
Kurniawan, Mario [1 ]
Sun, Dali [1 ]
Tabata, Hitoshi [1 ]
Delaunay, Jean-Jacques [1 ]
机构
[1] Univ Tokyo, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
关键词
CuO porous film; glucose; enzymatic sensing; non-enzymatic sensing; amperometry; POTENTIAL AMPEROMETRIC DETECTION; COPPER; NANOPARTICLES; BIOSENSORS; OXIDATION; ARRAYS; SENSOR; NANOSTRUCTURES; OXIDASE;
D O I
10.1088/0957-4484/26/1/015503
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoporous CuO layer on Cu foil with a thick Cu2O interlayer is synthesized via post annealing of previously fabricated Cu(OH)(2) nanowires at 500 degrees C under an oxygen flow. The formation of the thick sandwiched Cu2O layer is realized through the outward diffusion of Cu ions and subsequent oxidation. An O-2 pressure above the dissociation pressure of CuO is used to form a CuO layer at the outer surface of the structure, thus realizing a low cost structure having a porous and high isoelectric point layer. The Cu/Cu2O/CuO structure is used as an efficient electrode for glucose sensing. Sensitivities of 20.7 mA mM(-1) cm(-2) at 0.8 V versus Ag/AgCl and 1066 mu AmM-1 cm(-2) at 0.6 V versus Ag/AgCl are achieved in an enzymatic and non-enzymatic glucose sensing schemes, respectively. The improved electrochemical sensing ability might be attributed to the efficient electrocatalytic reaction on the high crystal quality CuO layer and the porous structure.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Sol-gel derived nanostructured cerium oxide film for glucose sensor [J].
Ansari, Anees A. ;
Solanki, Pratima R. ;
Malhotra, B. D. .
APPLIED PHYSICS LETTERS, 2008, 92 (26)
[2]   PHOTOVOLTAIC PROPERTIES AND BARRIER HEIGHTS OF SINGLE-CRYSTAL AND POLYCRYSTALLINE CU2O-CU CONTACTS [J].
ASSIMOS, JA ;
TRIVICH, D .
JOURNAL OF APPLIED PHYSICS, 1973, 44 (04) :1687-1693
[3]   The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide [J].
Batchelor-McAuley, Christopher ;
Du, Yi ;
Wildgoose, Gregory G. ;
Compton, Richard G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 135 (01) :230-235
[4]   Ionic strength-controlled virtual area of mesoporous platinum electrode [J].
Boo, H ;
Park, S ;
Ku, BY ;
Kim, Y ;
Park, JH ;
Kim, HC ;
Chung, TD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (14) :4524-4525
[5]   Recent advances in electrochemical glucose biosensors: a review [J].
Chen, Chao ;
Xie, Qingji ;
Yang, Dawei ;
Xiao, Hualing ;
Fu, Yingchun ;
Tan, Yueming ;
Yao, Shouzhuo .
RSC ADVANCES, 2013, 3 (14) :4473-4491
[6]   The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection [J].
Cherevko, Serhiy ;
Chung, Chan-Hwa .
TALANTA, 2010, 80 (03) :1371-1377
[7]   Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J].
Hrapovic, S ;
Liu, YL ;
Male, KB ;
Luong, JHT .
ANALYTICAL CHEMISTRY, 2004, 76 (04) :1083-1088
[8]   A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode [J].
Kang, Xinhuang ;
Mai, Zhibin ;
Zou, Xiaoyong ;
Cai, Peixiang ;
Mo, Jinyuan .
ANALYTICAL BIOCHEMISTRY, 2007, 363 (01) :143-150
[9]   Electrochemical Sensors and Biosensors [J].
Kimmel, Danielle W. ;
LeBlanc, Gabriel ;
Meschievitz, Mika E. ;
Cliffel, David E. .
ANALYTICAL CHEMISTRY, 2012, 84 (02) :685-707
[10]   Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors [J].
Lang, Xing-You ;
Fu, Hong-Ying ;
Hou, Chao ;
Han, Gao-Feng ;
Yang, Ping ;
Liu, Yong-Bing ;
Jiang, Qing .
NATURE COMMUNICATIONS, 2013, 4