Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes

被引:59
作者
Buffa, Annalisa
Houston, Paul
Perugia, Ilaria
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
discontinuous Galerkin methods; Maxwell's equations; discontinuous coefficients;
D O I
10.1016/j.cam.2006.01.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [A. Buffa, I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem, Technical Report 24-PV, IMATI-CNR, Pavia, Italy, 2005 (http://www.imati.cnr.it/similar to annalisa/PS/maxwell.pdf)], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 333
页数:17
相关论文
共 23 条