1H-NMR metabolomics-based surrogates to impute common clinical risk factors and endpoints

被引:14
作者
Bizzarri, D. [1 ,2 ]
Reinders, M. J. T. [2 ,3 ]
Beekman, M. [1 ]
Slagboom, P. E. [1 ,4 ]
Bbmri-Nl
van den Akker, E. B. [1 ,2 ,3 ]
机构
[1] LUMC, Mol Epidemiol, Leiden, Netherlands
[2] LUMC, Leiden Computat Biol Ctr, Einthovenweg 20, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Delft Bioinformat Lab, Delft, Netherlands
[4] Max Planck Inst Biol Ageing, Cologne, Germany
基金
荷兰研究理事会;
关键词
H-1-NMR metabolomics; Missing values; Epidemiology; Regression models; Association studies; Surrogate clinical variables; MAGNETIC-RESONANCE METABOLOMICS; CARDIOVASCULAR-DISEASE; GENDER; MORTALITY; EPIDEMIOLOGY; BIOMARKERS; IMPUTATION; SURVIVAL; PLASMA; WOMEN;
D O I
10.1016/j.ebiom.2021.103764
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Missing or incomplete phenotypic information can severely deteriorate the statistical power in epidemiological studies. High-throughput quantification of small-molecules in bio-samples, i.e. `metabolomics', is steadily gaining popularity, as it is highly informative for various phenotypical characteristics. Here we aim to leverage metabolomics to impute missing data in clinical variables routinely assessed in large epidemiological and clinical studies. Methods To this end, we have employed similar to 26,000 H-1-NMR metabolomics samples from 28 Dutch cohorts collected within the BBMRI-NL consortium, to create 19 metabolomics-based predictors for clinical variables, including diabetes status (AUC(5-Fold CV) = 0.94) and lipid medication usage (AUC(5-Fold CV) = 0.90). Findings Subsequent application in independent cohorts confirmed that our metabolomics-based predictors can indeed be used to impute a wide array of missing clinical variables from a single metabolomics data resource. In addition, application highlighted the potential use of our predictors to explore the effects of totally unobserved confounders in omics association studies. Finally, we show that our predictors can be used to explore risk factor profiles contributing to mortality in older participants. Interpretation To conclude, we provide H-1-NMR metabolomics-based models to impute clinical variables routinely assessed in epidemiological studies and illustrate their merit in scenarios when phenotypic variables are partially incomplete or totally unobserved. Copyright (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 59 条
[1]   Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts [J].
Ahola-Olli, Ari V. ;
Mustelin, Linda ;
Kalimeri, Maria ;
Kettunen, Johannes ;
Jokelainen, Jari ;
Auvinen, Juha ;
Puukka, Katri ;
Havulinna, Aki S. ;
Lehtimaki, Terho ;
Kahonen, Mika ;
Juonala, Markus ;
Keinanen-Kiukaanniemi, Sirkka ;
Salomaa, Veikko ;
Perola, Markus ;
Jarvelin, Marjo-Riitta ;
Ala-Korpela, Mika ;
Raitakari, Olli ;
Wurtz, Peter .
DIABETOLOGIA, 2019, 62 (12) :2298-2309
[2]  
An Yoonsuk, 2019, J Prev Med Public Health, V52, P393, DOI 10.3961/jpmph.19.146
[3]   Multiple imputation by chained equations: what is it and how does it work? [J].
Azur, Melissa J. ;
Stuart, Elizabeth A. ;
Frangakis, Constantine ;
Leaf, Philip J. .
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2011, 20 (01) :40-49
[4]   CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease - Application to Clinical and Public Health Practice - Clinical use of inflammatory markers in patients with cardiovascular diseases - A background paper [J].
Biasucci, LM .
CIRCULATION, 2004, 110 (25) :E560-E567
[5]   hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients With Myocardial Infarction: a Healthcare-Based Study [J].
Carrero, Juan Jesus ;
Franko, Mikael Andersson ;
Obergfell, Achim ;
Gabrielsen, Anders ;
Jernberg, Tomas .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (11)
[6]   Potential Impact and Study Considerations of Metabolomics in Cardiovascular Health and Disease A Scientific Statement From the American Heart Association [J].
Cheng, Susan ;
Shah, Svati H. ;
Corwin, Elizabeth J. ;
Fiehn, Oliver ;
Fitzgerald, Robert L. ;
Gerszten, Robert E. ;
Illig, Thomas ;
Rhee, Eugene P. ;
Srinivas, Pothur R. ;
Wang, Thomas J. ;
Jain, Mohit .
CIRCULATION-CARDIOVASCULAR GENETICS, 2017, 10 (02)
[7]   BIOMARKERS RELATED TO AGING IN HUMAN POPULATIONS [J].
Crimmins, Eileen ;
Vasunilashorn, Sarinnapha ;
Kim, Jung Ki ;
Alley, Dawn .
ADVANCES IN CLINICAL CHEMISTRY, VOL 46, 2008, 46 :161-216
[8]   A multiple-phenotype imputation method for genetic studies [J].
Dahl, Andrew ;
Iotchkova, Valentina ;
Baud, Amelie ;
Johansson, Asa ;
Gyllensten, Ulf ;
Soranzo, Nicole ;
Mott, Richard ;
Kranis, Andreas ;
Marchini, Jonathan .
NATURE GENETICS, 2016, 48 (04) :466-+
[9]   Impact of gender on statin efficacy [J].
Dale, Krista M. ;
Coleman, Craig I. ;
Shah, Sachin A. ;
Patel, Aarti A. ;
Kluger, Jeffrey ;
White, C. Michael .
CURRENT MEDICAL RESEARCH AND OPINION, 2007, 23 (03) :565-574
[10]   HEALTH BEHAVIORS AND SURVIVAL AMONG MIDDLE-AGED AND OLDER MEN AND WOMEN IN THE NHANES-I EPIDEMIOLOGIC FOLLOW-UP-STUDY [J].
DAVIS, MA ;
NEUHAUS, JM ;
MORITZ, DJ ;
LEIN, D ;
BARCLAY, JD ;
MURPHY, SP .
PREVENTIVE MEDICINE, 1994, 23 (03) :369-376