Demonstration of the stability or instability of multibreathers at low coupling

被引:45
作者
Archilla, JFR
Cuevas, J
Sánchez-Rey, B
Alvarez, A
机构
[1] Univ Seville, ETS Ingn Informat, Dept Fis Aplicada 1, Nonlinear Phys Grp, Seville 41003, Spain
[2] Fac Fis, Seville 41012, Spain
关键词
discrete breathers; multibreathers; intrinsic localized modes;
D O I
10.1016/S0167-2789(03)00064-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Whereas there exists a mathematical proof for one-site breathers stability, and an unpublished one for two-site breathers, the methods for determining the stability properties of multibreathers rely on numerical computation of the Floquet multipliers or on the weak nonlinearity approximation leading to discrete nonlinear Schrodinger equations. Here we present a set of multibreather stability theorems (MST) that provides a simple method to determine multibreathers stability in Klein-Gordon systems. These theorems are based in the application of degenerate perturbation theory to Aubry's band theory. We illustrate them with several examples. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 255
页数:21
相关论文
共 13 条
[1]   Dark breathers in Klein-Gordon lattices. band analysis of their stability properties [J].
Alvarez, A ;
Archilla, JFR ;
Cuevas, J ;
Romero, FR .
NEW JOURNAL OF PHYSICS, 2002, 4 :72.1-72.19
[2]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[3]  
CRETEGNY T, 1998, THESIS ECOLE NORMALE
[4]   Modulational instability: First step towards energy localization in nonlinear lattices [J].
Daumont, I ;
Dauxois, T ;
Peyrard, M .
NONLINEARITY, 1997, 10 (03) :617-630
[5]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[6]  
Griffiths D. J., 1995, Introduction to Quantum Mechanics
[7]   Intraband discrete breathers in disordered nonlinear systems. I. Delocalization [J].
Kopidakis, G ;
Aubry, S .
PHYSICA D, 1999, 130 (3-4) :155-186
[8]   Stability of discrete breathers [J].
MacKay, RS ;
Sepulchre, JA .
PHYSICA D, 1998, 119 (1-2) :148-162
[9]   PROOF OF EXISTENCE OF BREATHERS FOR TIME-REVERSIBLE OR HAMILTONIAN NETWORKS OF WEAKLY COUPLED OSCILLATORS [J].
MACKAY, RS ;
AUBRY, S .
NONLINEARITY, 1994, 7 (06) :1623-1643
[10]  
MARIN JL, 1995, NONLINEAR KLEINGORDO, P317