共 50 条
SSBER: removing batch effect for single-cell RNA sequencing data
被引:4
|作者:
Zhang, Yin
[1
,2
]
Wang, Fei
[1
,2
]
机构:
[1] Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[2] Fudan Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Data integration;
Batch effect;
The shared cell type;
Supervised cell type assignment;
SEQ;
EXPRESSION;
D O I:
10.1186/s12859-021-04165-w
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Background With the continuous maturity of sequencing technology, different laboratories or different sequencing platforms have generated a large amount of single-cell transcriptome sequencing data for the same or different tissues. Due to batch effects and high dimensions of scRNA data, downstream analysis often faces challenges. Although a number of algorithms and tools have been proposed for removing batch effects, the current mainstream algorithms have faced the problem of data overcorrection when the cell type composition varies greatly between batches. Results In this paper, we propose a novel method named SSBER by utilizing biological prior knowledge to guide the correction, aiming to solve the problem of poor batch-effect correction when the cell type composition differs greatly between batches. Conclusions SSBER effectively solves the above problems and outperforms other algorithms when the cell type structure among batches or distribution of cell population varies considerably, or some similar cell types exist across batches.
引用
收藏
页数:20
相关论文