Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhancement Cardiac MRI

被引:13
作者
Campello, Victor M. [1 ]
Martin-Isla, Carlos [1 ]
Izquierdo, Cristian [1 ]
Petersen, Steffen E. [3 ,4 ]
Gonzalez Ballester, Miguel A. [2 ,5 ]
Lekadir, Karim [1 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
[2] Univ Pompeu Fabra, DTIC, BCN MedTech, Barcelona, Spain
[3] Barts Hlth NHS Trust, Barts Heart Ctr, London, England
[4] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London, England
[5] ICREA, Barcelona, Spain
来源
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES | 2020年 / 12009卷
基金
英国工程与自然科学研究理事会;
关键词
Multi-sequence cardiac MRI; Late gadolinium enhancement MRI; Image segmentation; Image synthesis; Deep learning;
D O I
10.1007/978-3-030-39074-7_31
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Accurate segmentation of the cardiac boundaries in late gadolinium enhancement magnetic resonance images (LGE-MRI) is a fundamental step for accurate quantification of scar tissue. However, while there are many solutions for automatic cardiac segmentation of cine images, the presence of scar tissue can make the correct delineation of the myocardium in LGE-MRI challenging even for human experts. As part of the Multi-Sequence Cardiac MR Segmentation Challenge, we propose a solution for LGE-MRI segmentation based on two components. First, a generative adversarial network is trained for the task of modality-to-modality translation between cine and LGE-MRI sequences to obtain extra synthetic images for both modalities. Second, a deep learning model is trained for segmentation with different combinations of original, augmented and synthetic sequences. Our results based on three magnetic resonance sequences (LGE, bSSFP and T2) from 45 different patients show that the multi-sequence model training integrating synthetic images and data augmentation improves in the segmentation over conventional training with real datasets. In conclusion, the accuracy of the segmentation of LGE-MRI images can be improved by using complementary information provided by non-contrast MRI sequences.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 16 条
[1]   Automatic Cardiac LV Segmentation in MRI Using Modified Graph Cuts with Smoothness and Interslice Constraints [J].
Alba, Xenia ;
Figueras i Ventura, Rosa M. ;
Lekadir, Karim ;
Tobon-Gomez, Catalina ;
Hoogendoorn, Corne ;
Frangi, Alejandro F. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (06) :1775-1784
[2]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[3]   Towards cross-modal organ translation and segmentation: A cycle and shape-consistent generative adversarial network [J].
Cai, Jinzheng ;
Zhang, Zizhao ;
Cui, Lei ;
Zheng, Yefeng ;
Yang, Lin .
MEDICAL IMAGE ANALYSIS, 2019, 52 :174-184
[4]  
Chen C, 2019, AAAI CONF ARTIF INTE, P865
[5]   SynSeg-Net: Synthetic Segmentation Without Target Modality Ground Truth [J].
Huo, Yuankai ;
Xu, Zhoubing ;
Moon, Hyeonsoo ;
Bao, Shunxing ;
Assad, Albert ;
Moyo, Tamara K. ;
Savona, Michael R. ;
Abramson, Richard G. ;
Landman, Bennett A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (04) :1016-1025
[6]   Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Maier-Hein, Klaus H. .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :120-129
[7]   Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI [J].
Kurzendorfer, Tanja ;
Forman, Christoph ;
Schmidt, Michaela ;
Tillmanns, Christoph ;
Maier, Andreas ;
Brost, Alexander .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2017, 59 :13-27
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]   Automated left ventricle segmentation in late gadolinium-enhanced MRI for objective myocardial scar assessment [J].
Tao, Qian ;
Piers, Sebastiaan R. D. ;
Lamb, Hildo J. ;
van der Geest, Rob J. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (02) :390-399
[10]  
Wei D, 2011, LECT NOTES COMPUT SC, V6893, P428, DOI 10.1007/978-3-642-23626-6_53