Application of the 0-1 test for chaos to experimental data

被引:95
作者
Falconer, Ian [1 ]
Gottwald, Georg A. [1 ]
Melbourne, Ian [1 ]
Wormnes, Kjetil [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
英国工程与自然科学研究理事会;
关键词
testing for chaos; deterministic dynamical systems; experimental data; nonlinear time series;
D O I
10.1137/060672571
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reliable and efficient method of distinguishing between chaotic and nonchaotic behavior in noisecontaminated, but essentially stationary and deterministic, time series data has far reaching applications. Recently, we proposed a new method of detecting chaos which applies directly to the time series data and does not require phase space reconstruction. To illustrate the effectiveness of the method for experimental data, we analyze data from a bipolar motor.
引用
收藏
页码:395 / 402
页数:8
相关论文
共 19 条
  • [1] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [2] [Anonymous], 2012, Practical numerical algorithms for chaotic systems
  • [3] Hypermeander of spirals: local bifurcations and statistical properties
    Ashwin, P
    Melbourne, I
    Nicol, M
    [J]. PHYSICA D, 2001, 156 (3-4): : 364 - 382
  • [4] THE BIPOLAR MOTOR - A SIMPLE DEMONSTRATION OF DETERMINISTIC CHAOS
    BALLICO, MJ
    SAWLEY, ML
    SKIFF, F
    [J]. AMERICAN JOURNAL OF PHYSICS, 1990, 58 (01) : 58 - 61
  • [5] Deterministic Brownian motion in the hypermeander of spiral waves
    Biktashev, VN
    Holden, AV
    [J]. PHYSICA D, 1998, 116 (3-4): : 342 - 354
  • [6] Subexponential decay of correlations for compact group extensions of non-uniformly expanding systems
    Bruin, H
    Holland, M
    Melbourne, I
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1719 - 1738
  • [7] STATE-SPACE RECONSTRUCTION IN THE PRESENCE OF NOISE
    CASDAGLI, M
    EUBANK, S
    FARMER, JD
    GIBSON, J
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) : 52 - 98
  • [8] LIAPUNOV EXPONENTS FROM TIME-SERIES
    ECKMANN, JP
    KAMPHORST, SO
    RUELLE, D
    CILIBERTO, S
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 4971 - 4979
  • [9] Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions
    Field, M
    Melbourne, I
    Török, A
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 87 - 110
  • [10] Testing for chaos in deterministic systems with noise
    Gottwald, GA
    Melbourne, I
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (1-2) : 100 - 110