Privacy-Preserving Federated Reinforcement Learning for Popularity-Assisted Edge Caching

被引:9
作者
Zheng, Chong [1 ,2 ]
Liu, Shengheng [1 ,2 ]
Huang, Yongming [1 ,2 ]
Quek, Tony Q. S. [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
[3] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore 487372, Singapore
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/GLOBECOM46510.2021.9685242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the problem of edge caching (EC) optimization in a multi-user privacy-preserving mobile edge computing (MEC) system. The time-varying content popularity is considered and the primary objective is to maximize the EC hit rate on each caching entity in the distributed network. To this end, we introduce the concept of local and global popularities and cast the time-varying local popularities as model-free Markov chains. Next, an unsupervised recurrent federated learning (URFL) algorithm is proposed to predict the popularities while achieving privacy-preserving goal. The underlying distributed optimization problem is then reformulated as a distributed Markov decision process and solved by the privacy-preserving distributed deep deterministic policy gradient algorithm incorporating the URFL algorithm. Simulation results demonstrate the superiority of the proposed scheme in terms of prediction error and hit rate over the baseline methods.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Online Edge Caching and Wireless Delivery in Fog-Aided Networks With Dynamic Content Popularity [J].
Azimi, Seyyed Mohammadreza ;
Simeone, Osvaldo ;
Sengupta, Avik ;
Tandon, Ravi .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (06) :1189-1202
[2]  
Chen M., ARXIV210402151
[3]   Analysis and Optimization of Caching and Multicasting in Large-Scale Cache-Enabled Wireless Networks [J].
Cui, Ying ;
Jiang, Dongdong ;
Wu, Yueping .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (07) :5101-5112
[4]  
Gu SX, 2016, PR MACH LEARN RES, V48
[5]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[6]   Cloud-Assisted Multiview Video Summarization Using CNN and Bidirectional LSTM [J].
Hussain, Tanveer ;
Muhammad, Khan ;
Ullah, Amin ;
Cao, Zehong ;
Baik, Sung Wook ;
de Albuquerque, Victor Hugo C. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) :77-86
[7]   User Preference Learning-Based Edge Caching for Fog Radio Access Network [J].
Jiang, Yanxiang ;
Ma, Miaoli ;
Bennis, Mehdi ;
Zheng, Fu-Chun ;
You, Xiaohu .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (02) :1268-1283
[8]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[9]   Capacity-Aware Edge Caching in Fog Computing Networks [J].
Li, Qiang ;
Zhang, Yuanmei ;
Li, Yingyu ;
Xiao, Yong ;
Ge, Xiaohu .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) :9244-9248
[10]   Collaborative Online Edge Caching With Bayesian Clustering in Wireless Networks [J].
Liu, Junyan ;
Li, Dapeng ;
Xu, Youyun .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (02) :1548-1560