Equilibrium in Multi-criteria Transportation Networks

被引:8
作者
Dinh The Luc [1 ,2 ]
Truong Thi Thanh Phuong [3 ]
机构
[1] Avignon Univ, LMA, Avignon, France
[2] VAST, Ctr Informat & Comp, Hanoi, Vietnam
[3] Quy Nhon Univ, Quy Nhon, Vietnam
关键词
Multi-criteria transportation network; Generic differentiability; Vector equilibrium; Variational inequalities; Frank-Wolfe reduced gradient method; VECTOR VARIATIONAL-INEQUALITIES; CAPACITY CONSTRAINTS; TRAFFIC EQUILIBRIA; PROJECTION METHOD; MODEL; MULTICLASS; EFFICIENCY; ALGORITHM; BEHAVIOR; CHOICE;
D O I
10.1007/s10957-016-0876-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop a new method to generate the set of equilibrium flows of a multi-criteria transportation network. To this end, we introduce two optimization problems by using a vector version of the Heaviside step function and the distance function to Pareto minimal elements and show that the optimal solutions of these problems are exactly the equilibria of the network. We study the objective functions by establishing their generic differentiability and local calmness at equilibrium solutions. Then we present an algorithm to generate a discrete representation of equilibrium solutions by using a modified Frank-Wolfe reduced gradient method and prove its convergence. We give some numerical examples to illustrate our algorithm and show its advantage over a popular method by using linear scalarization.
引用
收藏
页码:116 / 147
页数:32
相关论文
共 44 条
[1]  
Ahuja RK, 1993, Network flows
[2]  
[Anonymous], 1956, STUDIES EC TRANSPORT
[3]  
[Anonymous], 1999, Network economics: A variational inequality approach
[4]  
Aubin JP., 1990, SET VALUED ANAL
[5]   A successive linear programming algorithm for nonsmooth monotone variational inequalities [J].
Bigi, Giancarlo ;
Panicucci, Barbara .
OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (01) :29-35
[6]  
Chen G. Y., 1993, 3196724 U PIS DEP MA
[7]  
Chen GY, 1999, MATH METHOD OPER RES, V49, P239
[8]   A multiproduct, multicriterion supply-demand network equilibrium model [J].
Cheng, T. C. E. ;
Wu, Y. N. .
OPERATIONS RESEARCH, 2006, 54 (03) :544-554
[9]  
Dafermos S, 1981, MULTICRIERIA ROUTE M
[10]   Variational inequalities and time-dependent traffic equilibria [J].
Daniele, P ;
Maugeri, A ;
Oettli, W .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (09) :1059-1062