Exact traveling wave solutions and bifurcations of the Biswas-Milovic equation

被引:8
作者
Zhu, Wenjing [1 ]
Li, Jibin [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Dept Math, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Solitary wave solution; Kink wave solution; Periodic wave solution; Compacton; Bifurcation; NONLINEAR SCHRODINGERS EQUATION; OPTICAL SOLITONS; LAW NONLINEARITIES; POWER-LAW;
D O I
10.1007/s11071-016-2621-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider the Biswas-Milovic equation. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the traveling wave system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (including solitary wave solutions, kink and anti-kink wave solutions, periodic wave solutions and compactons) under different parameter conditions.
引用
收藏
页码:1973 / 1987
页数:15
相关论文
共 17 条
  • [1] Stationary solutions for nonlinear dispersive Schrodinger's equation
    Biswas, Anjan
    Khalique, Chaudry Masood
    [J]. NONLINEAR DYNAMICS, 2011, 63 (04) : 623 - 626
  • [2] Bright and dark solitons of the generalized nonlinear Schrodinger's equation
    Biswas, Anjan
    Milovic, Daniela
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) : 1473 - 1484
  • [3] Byrd P., 1971, Grundlehren der mathematischen Wissenschaften
  • [4] Optical solitons with Biswas-Milovic equation for power law and dual-power law nonlinearities
    Eslami, M.
    Mirzazadeh, M.
    [J]. NONLINEAR DYNAMICS, 2016, 83 (1-2) : 731 - 738
  • [5] Stationary solutions for the Biswas-Milovic equation
    Khalique, Chaudry Masood
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7400 - 7404
  • [6] Li J., 2013, Singular Nonlinear Traveling Wave Equa- tions: Bifurcation and Exact Solutions
  • [7] Exact traveling wave solutions and bifurcations of the dual Ito equation
    Li, J. B.
    Chen, F. J.
    [J]. NONLINEAR DYNAMICS, 2015, 82 (03) : 1537 - 1550
  • [8] On a class of singular nonlinear traveling wave equations
    Li, Jibin
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 4049 - 4065
  • [9] Exact Solutions and Bifurcations of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (I)
    Li, Jibin
    Jiang, Lin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [10] Majid F., 2012, Casp. J. Math. Sci, V1, P88