Fabrication of Fully Inkjet-Printed Vias and SIW Structures on Thick Polymer Substrates

被引:44
作者
Kim, Sangkil [1 ]
Shamim, Atif [2 ]
Georgiadis, Apostolos [3 ]
Aubert, Herve [4 ]
Tentzeris, Manos M. [5 ]
机构
[1] Qualcomm, San Diego, CA 92121 USA
[2] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
[3] Ctr Tecnol Telecomun Catalunya, Barcelona 08860, Spain
[4] Wireless Commun Res Grp, Natl Ctr Sci Res Micro & Nanosyst, Anal & Architecture Syst, F-31400 Toulouse, France
[5] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY | 2016年 / 6卷 / 03期
基金
欧盟地平线“2020”;
关键词
Additive fabrication; inkjet-printed substrate-integrated waveguide (SIW); inkjet-printed via; low-cost via fabrication; polymethyl methacrylate (PMMA); CIRCUITS; ANTENNAS; SENSOR; TRACKS;
D O I
10.1109/TCPMT.2016.2522461
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a novel fully inkjet-printed via fabrication technology and various inkjet-printed substrate-integrated waveguide (SIW) structures on thick polymer substrates are presented. The electrical properties of polymethyl methacrylate (PMMA) are thoroughly studied up to 8 GHz utilizing the T-resonator method, and inkjet-printable silver nanoparticle ink on PMMA is characterized. A long via fabrication process up to 1 mm utilizing inkjet-printing technology is demonstrated, and its characteristics are presented for the first time. The inkjet-printed vias on 0.8-mm-thick substrate have a resistance of similar to 0.2 Omega. An equivalent circuit model of the inkjet-printed stepped vias is also discussed. An inkjet-printed microstrip-to-SIW interconnect and an SIW cavity resonator utilizing the proposed inkjet-printed via fabrication process are also presented. The design of the components and the fabrication steps are discussed, and the measured performances over the microwave frequency range of the prototypes are presented.
引用
收藏
页码:486 / 496
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 2011, P 18 EUR MICR PACK C
[2]   The Internet of Things: A survey [J].
Atzori, Luigi ;
Iera, Antonio ;
Morabito, Giacomo .
COMPUTER NETWORKS, 2010, 54 (15) :2787-2805
[3]   Review of substrate-integrated waveguide circuits and antennas [J].
Bozzi, M. ;
Georgiadis, A. ;
Wu, K. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2011, 5 (08) :909-920
[4]   Inkjet printing for materials and devices [J].
Calvert, P .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3299-3305
[5]   Mechanically Tunable Substrate Integrated Waveguide (SIW) Cavity Based Oscillator [J].
Collado, Ana ;
Mira, Fermin ;
Georgiadis, Apostolos .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (09) :489-491
[6]   Permittivity and loss tangent characterization for garment antennas based on a new matrix-pencil two-line method [J].
Declercq, Frederick ;
Rogier, Hendrik ;
Hertleer, Carla .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) :2548-2554
[7]   Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide [J].
Deslandes, Dominic ;
Wu, Ke .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (06) :2516-2526
[8]  
Deslandes D, 2010, IEEE MTT S INT MICR, P704, DOI 10.1109/MWSYM.2010.5517884
[9]  
Falat T., 2011, 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO), P473, DOI 10.1109/NANO.2011.6144291
[10]   Invisible silver tracks produced by combining hot-embossing and inkjet printing [J].
Hendriks, Chris E. ;
Smith, Patrick J. ;
Perelaer, Jolke ;
Van den Berg, Antje M. J. ;
Schubert, Ulrich S. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1031-1038