Magnetic properties of Co3O4 nanoparticles on graphene substrate

被引:27
作者
Yin, Kuibo [1 ]
Ji, Jing [1 ]
Shen, Yuting [1 ]
Xiong, Yuwei [1 ]
Bi, Hengchang [1 ]
Sun, Jun [1 ]
Xu, Tao [1 ]
Zhu, Zhiyuan [2 ]
Sun, Litao [1 ,3 ,4 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr,Collaborat Innovat Ctr Micr, Nanjing 210096, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
[3] Southeast Univ, Joint Res Inst, Ctr Adv Mat & Manufacture, Suzhou 215123, Peoples R China
[4] Monash Univ, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Cobalt oxide; Graphene; Magnetic properties; Antiferromagnetic nanoparticles; TEMPERATURE;
D O I
10.1016/j.jallcom.2017.05.275
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Antiferromagnetic nanoparticles have attracted tremendous research interests due to the exhibiting magnetization reversal by quantum tunneling. However, the magnetic properties vary with the inter-particle separation owing to the strong magnetostatic interaction. Thus, a suitable synthetic method is needed to make the antiferromagnetic nanoparticles well-dispersed. Here a facile low-temperature hydrothermal method was used to fabricate the graphene-Co3O4 nanocomposites. The Co3O4 antiferromagnetic nanoparticles have a monodispersed grain size and anchor uniformly on the graphene surface. Compared with the pure Co3O4 nanoparticles with the similar size distribution, the graphene-Co3O4 nanocomposites present different magnetic properties, including the higher magnetization and the lower blocking temperature. It is deduced that the graphene matrix prevents the aggregation of Co3O4 nanoparticles which leads to the differences of magnetic properties. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 24 条
[1]  
Abtew T, 2013, NANOSCALE, V5, P1902, DOI [10.1039/c2nr32972g, 10.1039/c2nr32972]
[2]   Enhancement of surface magnetization in antiferromagnetic nanoparticles [J].
Bhowmik, R. N. ;
Ranganathan, R. .
SOLID STATE COMMUNICATIONS, 2007, 141 (07) :365-368
[3]   Resonant spin tunneling in small magnetic particles [J].
Chudnovsky, EM .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 185 (03) :L267-L273
[4]   A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4 [J].
Dutta, P. ;
Seehra, M. S. ;
Thota, S. ;
Kumar, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (01)
[5]   Magnetic nanoparticles: Preparation methods, structure and properties [J].
Gubin, SP ;
Koksharov, YA ;
Khomutov, GB ;
Yurkov, GY .
USPEKHI KHIMII, 2005, 74 (06) :539-574
[6]   THE RAMAN-SPECTRA OF CO3O4 [J].
HADJIEV, VG ;
ILIEV, MN ;
VERGILOV, IV .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (07) :L199-L201
[7]   Graphene-based composites [J].
Huang, Xiao ;
Qi, Xiaoying ;
Boey, Freddy ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :666-686
[8]   The size-dependent magnetic properties of Co3O4 nanoparticles [J].
Ichiyanagi, Y ;
Yamada, S .
POLYHEDRON, 2005, 24 (16-17) :2813-2816
[9]   Magnetic nanoparticles [J].
Kodama, RH .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :359-372
[10]   Anomalous magnetic properties in Co3O4 nanoparticles covered with polymer decomposition residues [J].
Li, SD ;
Bi, H ;
Cui, BZ ;
Zhang, FM ;
Du, YW ;
Jiang, XQ ;
Yang, CZ ;
Yu, Q ;
Zhu, YP .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :7420-7422