Space-time cluster identification in point processes

被引:11
作者
Assuncao, Renato [1 ]
Tavares, Andrea
Correa, Thais
Kulldorff, Martin
机构
[1] Univ Fed Minas Gerais, Dept Estat, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Lab Estat Espacial, BR-31270901 Belo Horizonte, MG, Brazil
[3] Harvard Univ, Sch Med, Dept Ambulatory Care & Prevent, Boston, MA 02215 USA
[4] Harvard Pilgrim Hlth Care, Boston, MA 02215 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2007年 / 35卷 / 01期
关键词
cluster detection; Knox test; point pattern; Poisson process; spatial statistics;
D O I
10.1002/cjs.5550350105
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors propose a new type of scan statistic to test for the presence of space-time clusters in point processes data, when the goal is to identify and evaluate the statistical significance of localized clusters. Their method is based only on point patterns for cases; it does not require any specific knowledge of the underlying population. The authors propose to scan the three-dimensional space with a score test statistic under the null hypothesis that the underlying point process is an inhomogeneous Poisson point process with space and time separable intensity. The alternative is that there are one or more localized space-time clusters. Their method has been implemented in a computationally efficient way so that it can be applied routinely. They illustrate their method with space-time crime data from Belo Horizonte, a Brazilian city, in addition to presenting a Monte Carlo study to analyze the power of their new test.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 54 条
  • [41] Is there evidence of clustering in Down syndrome?
    Morris, JK
    Alberman, E
    Mutton, D
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1998, 27 (03) : 495 - 498
  • [42] Neill DB, 2005, SPATIAL AND SYNDROMIC SURVEILLANCE FOR PUBLIC HEALTH, P189, DOI 10.1002/0470092505.ch11
  • [43] Geographic and network surveillance via scan statistics for critical area detection
    Patil, GP
    Taillie, C
    [J]. STATISTICAL SCIENCE, 2003, 18 (04) : 457 - 465
  • [44] Rogerson P., 2001, Computers, Environment and Urban Systems, V25, P539, DOI 10.1016/S0198-9715(00)00030-2
  • [45] Monitoring point patterns for the development of space-time clusters
    Rogerson, PA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2001, 164 : 87 - 96
  • [46] Rossmo D. Kim, 1999, Geographic Profiling, DOI DOI 10.1201/9781420048780
  • [47] ROSSMO DK, 2001, CRIME MAPPING NEWS, V3, P7
  • [48] SPACE-TIME CLUSTERING IN INSULIN-DEPENDENT DIABETES-MELLITUS (IDDM) IN SOUTH-EAST SWEDEN
    SAMUELSSON, U
    JOHANSSON, C
    CARSTENSEN, J
    LUDVIGSSON, J
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1994, 23 (01) : 138 - 142
  • [49] A flexibly shaped spatial scan statistic for detecting clusters
    Tango T.
    Takahashi K.
    [J]. International Journal of Health Geographics, 4 (1)
  • [50] Identifying West Nile virus risk areas: The dynamic continuous-area space-time system
    Theophilides, CN
    Ahearn, SC
    Grady, S
    Merlino, M
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2003, 157 (09) : 843 - 854