Lightweight Modules for Efficient Deep Learning Based Image Restoration

被引:38
作者
Lahiri, Avisek [1 ]
Bairagya, Sourav [2 ]
Bera, Sutanu [1 ]
Haldar, Siddhant [1 ]
Biswas, Prabir Kumar [1 ]
机构
[1] Indian Inst Technol Kharagpur, Kharagpur 721302, W Bengal, India
[2] Mathworks, New Delhi 110001, India
关键词
Convolution; Image restoration; Task analysis; Neural networks; Kernel; Computational modeling; Image denoising; image inpainting; image super-resolution; CNN; generative adversarial network (GAN); adversarial learning; efficient neural networks;
D O I
10.1109/TCSVT.2020.3007723
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low level image restoration is an integral component of modern artificial intelligence (AI) driven camera pipelines. Most of these frameworks are based on deep neural networks which present a massive computational overhead on resource constrained platform like a mobile phone. In this paper, we propose several lightweight low-level modules which can be used to create a computationally low cost variant of a given baseline model. Recent works for efficient neural networks design have mainly focused on classification. However, low-level image processing falls under the 'image-to-image' translation genre which requires some additional computational modules not present in classification. This paper seeks to bridge this gap by designing generic efficient modules which can replace essential components used in contemporary deep learning based image restoration networks. We also present and analyse our results highlighting the drawbacks of applying depthwise separable convolutional kernel (a popular method for efficient classification network) for sub-pixel convolution based upsampling (a popular upsampling strategy for low-level vision applications). This shows that concepts from domain of classification cannot always be seamlessly integrated into 'image-to-image' translation tasks. We extensively validate our findings on three popular tasks of image inpainting, denoising and super-resolution. Our results show that proposed networks consistently output visually similar reconstructions compared to full capacity baselines with significant reduction of parameters, memory footprint and execution speeds on contemporary mobile devices.
引用
收藏
页码:1395 / 1410
页数:16
相关论文
共 50 条
  • [1] Lattice Network for Lightweight Image Restoration
    Luo, Xiaotong
    Qu, Yanyun
    Xie, Yuan
    Zhang, Yulun
    Li, Cuihua
    Fu, Yun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4826 - 4842
  • [2] AquaAE: A Lightweight Deep Learning Network for Underwater Image Restoration
    Yang, Chun
    Xie, Haijun
    Wang, Jiahang
    Liang, Haohua
    Zhang, Yuting
    Deng, Yi
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 138 - 144
  • [3] A survey of deep learning approaches to image restoration
    Su, Jingwen
    Xu, Boyan
    Yin, Hujun
    NEUROCOMPUTING, 2022, 487 : 46 - 65
  • [4] Variational Deep Image Restoration
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4363 - 4376
  • [5] Asymmetric Loss Based on Image Properties for Deep Learning-Based Image Restoration
    Zhu, Linlin
    Han, Yu
    Xi, Xiaoqi
    Zhang, Zhicun
    Liu, Mengnan
    Li, Lei
    Tan, Siyu
    Yan, Bin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (03): : 3367 - 3386
  • [6] Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification
    Shen, Yu
    Zhu, Sijie
    Chen, Chen
    Du, Qian
    Xiao, Liang
    Chen, Jianyu
    Pan, Delu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6029 - 6043
  • [7] Deep Likelihood Network for Image Restoration With Multiple Degradation Levels
    Guo, Yiwen
    Lu, Ming
    Zuo, Wangmeng
    Zhang, Changshui
    Chen, Yurong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2669 - 2681
  • [8] Adaptive Lightweight License Plate Image Recovery Using Deep Learning Based on Generative Adversarial Network
    Sereethavekul, Wuttinan
    Ekpanyapong, Mongkol
    IEEE ACCESS, 2023, 11 : 26667 - 26685
  • [9] Two-stream deep sparse network for accurate and efficient image restoration
    Wang, Shuhui
    Hu, Ling
    Li, Liang
    Zhang, Weigang
    Huang, Qingming
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 200
  • [10] A Deep Learning Framework for Joint Image Restoration and Recognition
    Chen, Ruilong
    Mihaylova, Lyudmila
    Zhu, Hao
    Bouaynaya, Nidhal Carla
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (03) : 1561 - 1580