Weight aspect exponential sums for Fourier coefficients of cusp forms

被引:0
作者
Hou, Fei [1 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 199卷 / 03期
关键词
Holomorphic cusp forms; Explicit dependence; Fourier coefficients; Exponential sums; SELBERG L-FUNCTIONS; ADDITIVE TWISTS;
D O I
10.1007/s00605-022-01750-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 2 be an even integer. Let f be a primitive holomorphic cusp form of weight k, with lambda(f) (n) being its n-th Fourier coefficient. We explicitly determine the dependence on the weight aspect by proving Sigma(n <= X) lambda(f)(n)e(n(2)alpha + n beta) << (Xk)(epsilon) X-21/22 k(31/22) uniformly for k, and any alpha, beta is an element of R, where the implied constant depends only on epsilon. In addition we obtain an analogue of the Prime Number Theorem associated to the Fourier coefficients of cusp forms Sigma(n <= X) Lambda(n)lambda(f)(n)e(n(2)alpha + n beta) << X exp (-c log X/root log X + log k) uniformly for k < X1/31-epsilon and any alpha, beta is an element of R, where the implied constant is absolute.
引用
收藏
页码:527 / 553
页数:27
相关论文
共 30 条
  • [1] [Anonymous], 2000, ASIAN J MATH, DOI DOI 10.4310/AJM.2000.V4.N4.A3
  • [2] Bateman H, 1953, HIGHER TRANSCENDENTA, V2
  • [3] A burgess-like subconvex bound for twisted L-functions
    Blomer, V.
    Harcos, G.
    Michel, P.
    Mao, Z.
    [J]. FORUM MATHEMATICUM, 2007, 19 (01) : 61 - 105
  • [4] Additive twists of Fourier coefficients of modular forms
    Godber, Daniel
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (01) : 83 - 104
  • [5] Goldfeld D., 2015, CAMBRIDGE STUD ADV M, V99
  • [6] Gradshteyn I S., 2000, TABLE INTEGRALS SERI
  • [7] The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points.: II
    Harcos, G
    Michel, P
    [J]. INVENTIONES MATHEMATICAE, 2006, 163 (03) : 581 - 655
  • [8] On the sup-norm of Maass cusp forms of large level. III
    Harcos, Gergely
    Templier, Nicolas
    [J]. MATHEMATISCHE ANNALEN, 2013, 356 (01) : 209 - 216
  • [9] Hybrid subconvexity bounds for
    Holowinsky, Roman
    Munshi, Ritabrata
    Qi, Zhi
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 555 - 579
  • [10] ON EXPONENTIAL SUMS INVOLVING COEFFICIENTS OF L-FUNCTIONS FOR SL(3, Z) OVER PRIMES
    Hou, Fei
    Jiang, Yujiao
    Lu, Guangshi
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (02) : 285 - 301