Automatic Image Annotation Based on Semi-supervised Probabilistic CCA

被引:1
作者
Zhang, Bo [1 ,2 ]
Ma, Gang [2 ,3 ]
Yang, Xi [2 ]
Shi, Zhongzhi [2 ]
Hao, Jie [4 ]
机构
[1] China Univ Min & Technol, Xuzhou 221116, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Xuzhou Med Univ, Sch Med Informat, Xuzhou 221000, Peoples R China
来源
INTELLIGENT INFORMATION PROCESSING VIII | 2016年 / 486卷
关键词
Probabilistic CCA; Semi-supervised method; Automatic image annotation;
D O I
10.1007/978-3-319-48390-0_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel semi-supervised method for building a statistical model that represents the relationship between images and text labels (tags) based on a semi-supervised variant of CCA called Semi-PCCA, which extends the probabilistic CCA model to make use of the labelled and unlabelled images together to extract the low-dimensional latent space representing topics of images. Real-world image tagging experiments indicate that our proposed method improves the accuracy even when only a small number of labelled images are available.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 2005, A Probabilistic Interpretation of Canonical Correlation Analysis
[2]  
Blaschko MB, 2008, LECT NOTES ARTIF INT, V5211, P133, DOI 10.1007/978-3-540-87479-9_27
[3]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[4]   A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data [J].
Chen, Xiaohong ;
Chen, Songcan ;
Xue, Hui ;
Zhou, Xudong .
PATTERN RECOGNITION, 2012, 45 (05) :2005-2018
[5]  
Feng SL, 2004, PROC CVPR IEEE, P1002
[6]   Localization with Incompletely Paired Data in Complex Wireless Sensor Network [J].
Gu, Jingjing ;
Chen, Songcan ;
Sun, Tingkai .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2011, 10 (09) :2841-2849
[7]  
Harada T, 2009, IEEE INT CON MULTI, P858, DOI 10.1109/ICME.2009.5202630
[8]   Unsupervised learning by probabilistic latent semantic analysis [J].
Hofmann, T .
MACHINE LEARNING, 2001, 42 (1-2) :177-196
[9]  
Jeon J., 2003, P 26 ANN INT ACM SIG
[10]  
Kimura Akisato, 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P2933, DOI 10.1109/ICPR.2010.719