Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere

被引:21
作者
Cang, Ji [1 ]
Zhang, Yixin [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
OPTIK | 2010年 / 121卷 / 03期
关键词
Bessel-Gauss beams; Topological charge; Extended Huygens-Fresnel principle; Atmospheric turbulence; Average intensity; PARAXIAL OPTICAL-SYSTEMS; PROPAGATION; APERTURE;
D O I
10.1016/j.ijleo.2008.06.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of the extended Huygens-Fresnel integral formula in the paraxial approximation and based on the fact that a hard aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical expression for Bessel-Gauss beams propagating in it turbulent atmosphere truncated by an aperture has been derived. The result is more convenient for studying the axial intensity distribution properties of Bessel-Gauss beams with different topological charges in a turbulent atmosphere than the usual way by using diffraction integral directly. Utilizing the analytical expression, the axial intensity distribution of such kind of beam in a turbulent atmosphere is investigated numerically in detail. Results show that the intensity distribution on the axis changes with the variation of the beam topological charge in, the wavelength and beam waist width of the initial beam and the turbulent strength. (C) 2008 Elsevier GmbH. All rights reserved.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 17 条
[1]  
Andrews L. C., 1998, Laser Beam Propagation through Random Media
[2]  
Bagini V, 1996, J MOD OPTIC, V43, P1155, DOI 10.1080/09500349608232794
[3]   Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system [J].
Belafhal, A ;
Dalil-Essakali, L .
OPTICS COMMUNICATIONS, 2000, 177 (1-6) :181-188
[4]  
Born M., 1999, Principles of optics, Vseventh
[5]   Propagation of Bessel and Bessel-Gaussian beams through an unapertured or apertured misaligned paraxial optical systems [J].
Cai, Yangjian ;
Lu, Xiang .
OPTICS COMMUNICATIONS, 2007, 274 (01) :1-7
[6]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[7]  
GRADYSTEYN IS, 2000, TABLES INTEGRALS SER
[8]   Generalized Helmholtz-Gauss beam and its transformation by paraxial optical systems [J].
Guizar-Sicairos, Manuel ;
Gutiérrez-Vega, Julio C. .
OPTICS LETTERS, 2006, 31 (19) :2912-2914
[9]   Focal shift and focal switch of Bessel-Gaussian beams passing through a lens system with or without aperture [J].
Ji, Xiaoling ;
Lu, Baida .
OPTICS AND LASER TECHNOLOGY, 2007, 39 (03) :562-568
[10]   FREE-SPACE AZIMUTHAL PARAXIAL WAVE-EQUATION - THE AZIMUTHAL BESSEL-GAUSS BEAM SOLUTION [J].
JORDAN, RH ;
HALL, DG .
OPTICS LETTERS, 1994, 19 (07) :427-429