Schrodinger operators on regular metric trees with long range potentials: Weak coupling behavior

被引:1
作者
Ekholm, Tomas [2 ]
Enblom, Andreas [1 ]
Kovarik, Hynek [3 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[2] Lund Univ, Dept Math, S-22100 Lund, Sweden
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Schrodinger operators; Metric trees; Fourier-Bessel transformation; Weak coupling; BOUND-STATES; LAPLACIAN; SPECTRUM; GRAPHS;
D O I
10.1016/j.jde.2009.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a regular d-dimensional metric tree Gamma with root o. Define the Schrodinger operator -Delta -V, where V is a non-negative, symmetric potential, on Gamma. with Neumann boundary conditions at o. Provided that V decays like |x|(-gamma) at infinity, where 1 <= gamma <= d <= 2, gamma not equal 2, we will determine the weak coupling behavior of the bottom of the spectrum of -Delta -V. In other words. we will describe the asymptotic behavior of inf sigma(-Delta - alpha V) as alpha -> 0+. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:850 / 865
页数:16
相关论文
共 16 条
  • [1] Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
  • [2] BIRMAN M. S., 1961, Mat. Sb. (N.S.), V55, P125
  • [3] BOUND-STATES OF WEAKLY COUPLED LONG-RANGE ONE-DIMENSIONAL QUANTUM HAMILTONIANS
    BLANKENBECLER, R
    GOLDBERGER, ML
    SIMON, B
    [J]. ANNALS OF PHYSICS, 1977, 108 (01) : 69 - 78
  • [4] CARLSON R, 2000, ELECT J DIFFERENTIAL, V71
  • [5] Dunford N., 1988, LINEAR OPERATORS, V2
  • [6] Weakly coupled states on branching graphs
    Exner, P
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (03) : 313 - 320
  • [7] KLAUS M, 1979, HELV PHYS ACTA, V52, P223
  • [8] Kirchhoff's rule for quantum wires
    Kostrykin, V
    Schrader, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (04): : 595 - 630
  • [9] Weakly coupled Schrodinger operators on regular metric trees
    Kovarik, Hynek
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1135 - 1149
  • [10] Quantum graphs: I. Some basic structures
    Kuchment, P
    [J]. WAVES IN RANDOM MEDIA, 2004, 14 (01): : S107 - S128