Towards developing a backing layer for proton exchange membrane electrolyzers

被引:135
|
作者
Lettenmeier, P. [1 ]
Kolb, S. [1 ]
Burggraf, F. [1 ]
Gago, A. S. [1 ]
Friedrich, K. A. [1 ,2 ]
机构
[1] German Aerosp Ctr, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Energy Storage, Keplerstr 7, D-70174 Stuttgart, Germany
关键词
Backing layer; MPL; PEM electrolyzer; PEM electrolysis; Current collector; Titanium; VISUALIZING BUBBLE FLOWS; PEM WATER ELECTROLYSIS; GAS-DIFFUSION LAYER; FUEL-CELLS; MICROFLUIDIC PLATFORMS; PERFORMANCE; IMPEDANCE;
D O I
10.1016/j.jpowsour.2016.01.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral ones, such as hydrogen. The backing or micro-porous layer plays an important role in the performance of hydrogen proton exchange membrane (PEM) fuel cells, reducing contact resistance and improving reactant/product management. Such carbon-based coating cannot be used in PEM electrolysis since it oxidizes to CO2 at high voltages. A functional titanium macro-porous layer (MPL) on the current collectors of a PEM electrolyzer is developed by thermal spraying. It improves the contact with the catalyst layers by ca. 20 m Omega cm(2), increasing significantly the efficiency of the device when operating at high current densities. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 50 条
  • [1] Toward developing accelerated stress tests for proton exchange membrane electrolyzers
    Assmann, Pia
    Gago, Aldo Saul
    Gazdzicki, Pawel
    Friedrich, Kaspar Andreas
    Wark, Michael
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 225 - 233
  • [2] Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers
    Cho, Junsic
    Kim, Dong Hyun
    Noh, Min Wook
    Kim, Haesol
    Oh, Hong-Gyun
    Lee, Pilyoung
    Yoon, Soobin
    Won, Wangyun
    Park, Young-June
    Lee, Ung
    Choi, Chang Hyuck
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23688 - 23696
  • [3] A comparison of alkaline and proton exchange membrane electrolyzers
    D. Lj. Stojić
    T. D. Grozdić
    B. Umićević
    A. D. Maksić
    Russian Journal of Physical Chemistry A, Focus on Chemistry, 2008, 82
  • [4] A Comparison of Alkaline and Proton Exchange Membrane Electrolyzers
    Stojic, D. Lj.
    Grozdic, T. D.
    Umicevic, Ana B.
    Maksic, A. D.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 82 (11) : 1958 - 1960
  • [5] Probing the mechanistic role of the catalyst layer microstructure in proton exchange membrane water electrolyzers
    Goswami, Navneet
    Ayyaswamy, Abhinand
    Nath, Anindya
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [6] The effect of the backing layer design on the mass transfer in a proton exchange membrane fuel cell
    Hu, Mingruo
    Cao, Guangyi
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [7] Anode Engineering for Proton Exchange Membrane Water Electrolyzers
    Qiu, Chang
    Xu, Zikai
    Chen, Feng-Yang
    Wang, Haotian
    ACS CATALYSIS, 2024, 14 (02) : 921 - 954
  • [8] Advancing Proton Exchange Membrane Electrolyzers with Molecular Catalysts
    Zhang, Biaobiao
    Fan, Lizhou
    Ambre, Ram B.
    Liu, Tianqi
    Meng, Qijun
    Timmer, Brian J. J.
    Sun, Licheng
    JOULE, 2020, 4 (07) : 1408 - 1444
  • [9] Towards cost-effective and durable bipolar plates for proton exchange membrane electrolyzers: A review
    Liu, Tao
    Tao, Youkun
    Wang, Yanli
    Hu, Meiqi
    Zhang, Zhen
    Shao, Jing
    FUEL, 2024, 368
  • [10] Advanced Electrocatalyst Supports for Proton Exchange Membrane Water Electrolyzers
    Zaman, Shahid
    Khalid, Mohmmad
    Shahgaldi, Samaneh
    ACS ENERGY LETTERS, 2024, 9 (06): : 2922 - 2935