The partition function modulo 3 in arithmetic progressions

被引:0
作者
Smith, Geoffrey D. [1 ]
Ye, Lynnelle [2 ]
机构
[1] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Partitions; Congruences; Modular forms; PARITY;
D O I
10.1007/s11139-015-9680-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be the partition function. Ahlgren and Ono conjectured that every arithmetic progression contains infinitely many integers for which is not congruent to . Radu proved this conjecture in 2010 using the work of Deligne and Rapoport. In this note, we give a simpler proof of Ahlgren and Ono's conjecture in the special case where the modulus of the arithmetic progression is a power of by applying a method of Boylan and Ono and using the work of Bella < che and Khare generalizing Nicolas and Serre's results on the local nilpotency of the Hecke algebra.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 12 条
  • [1] Ahlgren S., 2001, CONT MATH, V291, P1
  • [2] Bellaiche Joel., PREPRINT
  • [3] Parity of the partition function in arithmetic progressions, II
    Boylan, M
    Ono, K
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 558 - 564
  • [4] Deligne P., 1973, Lecture Notes in Math., P143
  • [5] l-Adic properties of the partition function
    Folsom, Amanda
    Kent, Zachary A.
    Ono, Ken
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (03) : 1586 - 1609
  • [6] Modular forms mod 2: Structure of the Hecke ring
    Nicolas, Jean-Louis
    Serre, Jean-Pierre
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 449 - 454
  • [7] The nilpotence order of the mod 2 Hecke operators
    Nicolas, Jean-Louis
    Serre, Jean-Pierre
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (7-8) : 343 - 348
  • [8] Ono K, 1996, J REINE ANGEW MATH, V472, P1
  • [9] Distribution of the partition function module m
    Ono, K
    [J]. ANNALS OF MATHEMATICS, 2000, 151 (01) : 293 - 307
  • [10] A proof of Subbarao's conjecture
    Radu, Cristian-Silviu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 : 161 - 175