Structures and ice-binding faces of the alanine-rich type I antifreeze proteins

被引:2
|
作者
Patel, Shruti N. [1 ]
Graether, Steffen P. [1 ]
机构
[1] Univ Guelph, Dept Mol & Cellular Biol, Guelph, ON N1G 2W1, Canada
关键词
antifreeze proteins; winter flounder; shorthorn sculpin; ice; structure; hyperactive; WINTER FLOUNDER ANTIFREEZE; FREEZING RESISTANCE; SHORTHORN SCULPIN; GROWTH-INHIBITION; POLYPEPTIDE; FISH; HYSTERESIS; AMERICANUS; ADSORPTION; MECHANISM;
D O I
10.1139/O09-183
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antifreeze proteins (AFPs) protect cold-blooded organisms from the damage caused by freezing through their ability to inhibit ice growth. The type I AFP family, found in several fish species, contains proteins that have a high alanine content (>60% of the sequence) and structures that are almost all alpha-helical. We examine the structure of the type I AFP isoforms HPLC6 from winter flounder, shorthorn sculpin 3, and the winter flounder hyperactive type I AFP. The HPLC6 isoform structure consists of a single alpha-helix that is 37 residues long, whereas the shorthorn sculpin 3 isoform consists of two helical regions separated by a kink. The high-resolution structure of the hyperactive type I AFP has yet to be determined, but circular dichroism data and analytical ultracentrifugation suggest that the 195 residue protein is a side-by-side dimer of two alpha-helices. The alanine-rich ice-binding faces of HPLC6 and hyperactive type I AFP are discussed, and we propose that the ice-binding face of the shorthorn sculpin 3 AFP contains Ala14, Ala19, and Ala25. We also propose that the denaturation of hyperactive type I AFP at room temperature is explained by the stabilization of the dimerization interface through hydrogen bonds.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 50 条
  • [1] Source of the ice-binding specificity of antifreeze protein type I
    Dalal, P
    Sönnichsen, FD
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05): : 1276 - 1284
  • [2] New ice-binding face for type I antifreeze protein
    Baardsnes, J
    Kondejewski, LH
    Hodges, RS
    Chao, H
    Kay, C
    Davies, PL
    FEBS LETTERS, 1999, 463 (1-2) : 87 - 91
  • [3] STRUCTURAL VARIATIONS IN THE ALANINE-RICH ANTIFREEZE PROTEINS OF THE PLEURONECTINAE
    SCOTT, GK
    DAVIES, PL
    SHEARS, MA
    FLETCHER, GL
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 168 (03): : 629 - 633
  • [4] Ice-binding mechanism of winter flounder antifreeze proteins
    Cheng, AL
    Merz, KM
    BIOPHYSICAL JOURNAL, 1997, 73 (06) : 2851 - 2873
  • [5] Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins
    Choi, Seo-Ree
    Lee, Jaewang
    Seo, Yeo-Jin
    Kong, Hyun Sun
    Kim, Minjae
    Jin, EonSeon
    Lee, Jung Ryeol
    Lee, Joon-Hwa
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 897 - 909
  • [6] Synergy between Antifreeze Proteins Is Driven by Complementary Ice-Binding
    Berger, Tehilla
    Meister, Konrad
    DeVries, Arthur L.
    Eves, Robert
    Davies, Peter L.
    Drori, Ran
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (48) : 19144 - 19150
  • [7] Ice-binding surface of fish type III antifreeze
    Chen, GJ
    Jia, ZC
    BIOPHYSICAL JOURNAL, 1999, 77 (03) : 1602 - 1608
  • [8] Alternative roles for putative ice-binding residues in type I antifreeze protein
    Loewen, MC
    Chao, HM
    Houston, ME
    Baardsnes, J
    Hodges, RS
    Kay, CM
    Sykes, BD
    Sonnichsen, FD
    Davies, PL
    BIOCHEMISTRY, 1999, 38 (15) : 4743 - 4749
  • [9] A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze
    Chao, H
    Hodges, RS
    Kay, CM
    Gauthier, SY
    Davies, PL
    PROTEIN SCIENCE, 1996, 5 (06) : 1150 - 1156
  • [10] Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions
    Doxey, Andrew C.
    Yaish, Mahmoud W.
    Griffith, Marilyn
    McConkey, Brendan J.
    NATURE BIOTECHNOLOGY, 2006, 24 (07) : 852 - 855