A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY

被引:52
作者
Becker, Roland [1 ]
Mao, Shipeng [2 ]
Shi, Zhongci [2 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appl, F-64013 Pau, France
[2] Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
adaptive methods; nonconforming finite elements; a posteriori error estimation; convergence rate; computational complexity;
D O I
10.1137/070701479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove convergence and quasi-optimal complexity of a simple adaptive nonconforming finite element method. In each step of the algorithm, the iterative solution of the discrete system is controlled by an adaptive stopping criterion, and the local refinement is based on either a simple edge residual or a volume term, depending on an adaptive marking strategy. We prove that this marking strategy guarantees a strict reduction of the error, augmented by the volume term and an additional oscillation term, and quasi-optimal complexity of the generated sequence of meshes.
引用
收藏
页码:4639 / 4659
页数:21
相关论文
共 37 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[2]  
[Anonymous], 1978, STUDIES MATH ITS APP
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[5]  
Babuska I., 2001, NUMER MATH SCI COMP
[6]   An optimally convergent adaptive mixed finite element method [J].
Becker, Roland ;
Mao, Shipeng .
NUMERISCHE MATHEMATIK, 2008, 111 (01) :35-54
[7]  
Becker R, 2008, ELECTRON T NUMER ANA, V30, P291
[8]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[9]   Convergence analysis of a conforming adaptive finite element method for an obstacle problem [J].
Braess, Dietrich ;
Carstensen, Carsten ;
Hoppe, Ronald H. W. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :455-471
[10]  
Carstensen C, 2006, NUMER MATH, V103, P251, DOI [10.1007/s00211-005-0658-6, 10.1007/S00211-005-0658-6]